Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

305 results about "Acoustic array" patented technology

Ultrasonic array probe signal acquisition component and preparation method thereof, and probe

The invention relates to the technical field of ultrasonic probes, in particular to an ultrasonic array probe signal acquisition component and a preparation method thereof, and a probe. The acquisition component provided by the invention comprises two or more probe array elements, each probe array element comprises a backing and a piezoelectric layer composed of two or more piezoelectric crystal plates; flangings of positive electrodes and negative electrodes of the two piezoelectric crystal plates are butted; the piezoelectric layer is divided into a lead region, a heat conduction region and a signal region; a backing is connected to the signal region, and the bottom of the backing is connected with the bottom of the backing of an adjacent probe array element; a heat dissipating piece is connected to the heat conduction region, and the heat dissipating piece is connected with the ground electrode of an outer cable; and a flexible circuit board is connected with the lead region, and the flexible circuit board is connected with the outer cable through the probe circuit board. According to the ultrasonic array probe signal acquisition component and the probe provided by invention, the problem of probe temperature rising is effectively solved, the send-receive capacity of signals is improved, probe functions of testing image resolution ratio and sharpness are improved, and the impact of the probe array element signal crosstalk to imaging sharpness is decreased.
Owner:EDAN INSTR

Subaqueous multi-cable positioning system and method thereof.

The invention relates to a subaqueous multi-cable positioning system and a method thereof. The system comprises a data collection card, a main control machine and a plurality of dragging cables, wherein the data collection card and the main control machine are positioned on a water surface cable dragging ship, and the dragging cables are dragged by the cable dragging ship. Array elements comprising an acoustic energy transducer, a bathometer and a compass and a data transmission system comprising a data transmission packet are arranged in the dragging cables. The main control machine transmitsa positioning command to each array element, the array elements measure the required positioning information, and the main control machine resolves each section of concrete position of the dragging cables. The invention adopts the hydroacoustic positioning of an optimized acoustic array and combines a GPS drogue, the compass and the bathometer to position a plurality of cables. The method comprises the following steps: firstly, determining the geodetic coordinates of the front end and the back end of each dragging cable by a GPS; measuring the depth information of each section of the draggingcables by the bathometer, resolving the transverse and longitudinal coordinates of each section on the dragging cables relative to the navigation direction of the dragging ship by acoustic positioning primarily and retaining the value of the transverse coordinates; and recalculating the longitudinal coordinates of each section on the dragging cables by the value of the transverse coordinates obtained by compass data and acoustic positioning.
Owner:嘉兴中科声学科技有限公司

Telemetry system and method for acoustic arrays

A telemetry system includes a plurality of acoustic sensors for receiving acoustic information and generating analog signals based on the received acoustic information. A first plurality of subsystems is coupled to at least a subset of the plurality of acoustic sensors. The first plurality of subsystems is configured to receive the analog signals from the acoustic sensors and generate digital values based on the received analog signals. The system includes a first optical splitter. A first optical transmitter transmits a first set of optical pulses to the first optical splitter. The first optical splitter is configured to transmit the first set of optical pulses to each subsystem in the first plurality of subsystems. Each subsystem in the first plurality of subsystems is configured to modulate the first set of optical pulses based on the generated digital values and thereby generate a modulated optical pulse stream. A first optical combiner receives and combines the modulated optical pulse stream from each subsystem in the first plurality of subsystems, thereby generating a combined modulated optical pulse stream. A first optical receiver receives the combined modulated optical pulse stream from the first optical combiner. The first optical receiver is configured to generate electrical signals based on the received combined modulated optical pulse stream.
Owner:LOCKHEED MARTIN CORP

Sound identification method based on cross acoustic array broadband wave beam formation

The invention discloses a sound identification method based on a cross acoustic array broadband wave beam formation. The sound identification method comprises steps of using a cross acoustic array to align with a needed direction to collect acoustic signals, 2, performing pre-processing on collected sound, 3, performing DFT (discrete Fourier transform) on processed data of each frame, performing frequency band extraction according to a needed frequency band, 4, performing LSMI-MVDR wave beam formation on the needed direction by the extracted frequency band, 5, performing inverse DFT on a frequency domain signal after the wave beam is formed, 6, performing frame overlapping synthesis according to the framing principle to output a signal, and 7, performing characteristic extraction and classification study and identification. The sound identification method based on cross acoustic array broadband wave beam formation can improve a signal-to-noise ratio of the signal received in an expected direction, inhibits interference signals of other directions, can be applied to a signal processing process of an acoustic identification system and can effectively improve an identification rate and reliability of the identification system on the identification object.
Owner:HANGZHOU DIANZI UNIV

Combined acoustic array for multi-beam synthetic aperture sonar

The invention provides a combined acoustic array for a multi-beam synthetic aperture sonar. The combined acoustic array mainly comprises a long linear transmitting transducer, an azimuth direction receiving linear array and a distance direction receiving linear array, wherein the receiving linear arrays consist of a group of uniformly spaced sensors; the azimuth direction receiving linear array and the distance direction receiving linear array are vertical to each other; the long linear transmitting transducer is vertical to the distance direction receiving linear array; and the distance direction receiving linear array is used for forming multi-beams, forming beams at a plurality of angles by processing beam forming of echo signals thereof, and removing azimuth ambiguity caused by space undersampling by performing synthetic aperture treatment on the echo signal of each array element of the azimuth direction receiving array under the conditions of definite pulse transmitting frequency and the increasing navigation speed of a mother ship. The azimuth ambiguity caused by the space undersampling is removed by the azimuth direction receiving linear array so as to increase the surveying and mapping speed of the multi-beam synthetic aperture sonar; and the combined acoustic array has a simple process and low cost.
Owner:HARBIN ENG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products