Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

61 results about "Cmos mems" patented technology

Fundamentally, CMOS MEMS is CMOS. The metal dielectric layers that comprise the mechanical MEMS structures are the same layers that form the electronic circuits. These circuits are integrated with the MEMS structures and are typically located only tens of microns from the MEMS structures.

Method of forming monolithic cmos-mems hybrid integrated, packaged structures

A method of forming Monolithic CMOS-MEMS hybrid integrated, packaged structures includes the steps of providing: providing a semiconductor substrate with pre-fabricated cmos circuits on the front side and a polished back-side with through substrate conductive vias; forming at least one opening in the polished backside of the semiconductor substrate by appropriately protecting the front-side; applying at least one filler material in the at least one opening on the semiconductor substrate; positioning at least one prefabricated mems, nems or cmos chip on the filler material, the chip including a front face and a bare back face with the prefabricated mems/nems chips containing mechanical and dielectric layers; applying at least one planarization layer overlying the substrate, filler material and the chip; forming at least one via opening on a portion of the planarization layer interfacing pads on the chip and the through substrate conductive vias; applying at least one metallization layer overlying the planarization layer on the substrate and the chip connecting the through substrate conductive vias to the at least one chip; applying at least one second insulating layer overlying the metallization layer; performing at least one micro/nano fabrication etching step to release the mechanical layer on the prefabricated mems/nems chips; positioning protective cap to package the integrated device over the mems/nems device area on the pre-fabricated chips.
Owner:AMF NANO

Method of forming monolithic cmos-mems hybrid integrated, packaged structures

A method of forming Monolithic CMOS-MEMS hybrid integrated, packaged structures includes the steps of providing: providing at least one semiconductor substrate having a CMOS device area including dielectric layers and metallization layers; applying at least one protective layer overlying the CMOS device area; forming at least one opening on the protective layer and patterning the dielectric and metallization layers to access the semiconductor substrate; forming at least one opening on the semiconductor substrate by etching the dielectric and metallization layers; applying at least one filler layer in the at least one opening on the semiconductor substrate; positioning at least one chip on the filler layer, the chip including a prefabricated front face and a bare backside; applying a first insulating layer covering the front face of the chip providing continuity from the semiconductor substrate to the chip; forming at least one via opening on the insulating layer covering the chip to access at least one contact area; applying at least one metallization layer overlying the insulating layer on the substrate and the chip connecting the metallization layer on the substrate to the at least one another contact area on the chip; applying a second insulating layer overlying the metallization layer on the at least one chip; applying at least one interfacial layer; applying at least one rigid substrate overlying the interfacial layer; and applying at least one secondary protective layer overlying the rigid substrate.
Owner:AMF NANO

CMOS-MEMS (complementary metal oxide semiconductor-micro-electromechanical system) capacitive humidity sensor

The invention relates to a CMOS-MEMS (complementary metal oxide semiconductor-micro-electromechanical system) capacitive humidity sensor which is characterized by comprising upper interdigital electrodes and lower interdigital electrodes, wherein the lower electrodes penetrate a SiO2 oxide layer and are arranged on the same surface of a silicon substrate; the upper electrodes are arranged above the lower electrodes; humidity-sensitive mediums are filled between the upper electrodes and the lower electrodes, between the interdigital parts of the upper electrodes and between the interdigital parts of the lower electrodes; aluminum strips are arranged above the upper electrodes and positioned between the interdigital parts of the upper electrodes and the lower electrodes; humidity-sensitive mediums are filled between the aluminum strips and the upper electrodes; a cavity is formed in the silicon substrate under the upper electrodes and the lower electrodes, so that the lower electrodes and the humidity-sensitive mediums between the interdigital parts of the lower electrodes are directly in contact with the air; the interdigital parts of the upper electrodes and the interdigital parts of the lower electrodes coincide in the height direction; the humidity-sensitive mediums are polyimide. The CMOS-MEMS capacitive humidity sensor is quick in response, high in sensitivity, wide in output range, high-temperature-resistant, small in humidity error and good in temperature characteristic and long stability.
Owner:中科芯未来微电子科技成都有限公司

Method of forming monolithic cmos-mems hybrid integrated, packaged structures

A method of forming Monolithic CMOS-MEMS hybrid integrated, packaged structures includes the steps of providing: providing at least one semiconductor substrate having a CMOS device area including dielectric layers and metallization layers; applying at least one protective layer overlying the CMOS device area; forming at least one opening on the protective layer and patterning the dielectric and metallization layers to access the semiconductor substrate; forming at least one opening on the semiconductor substrate by etching the dielectric and metallization layers; applying at least one filler layer in the at least one opening on the semiconductor substrate; positioning at least one chip on the filler layer, the chip including a prefabricated front face and a bare backside; applying a first insulating layer covering the front face of the chip providing continuity from the semiconductor substrate to the chip; forming at least one via opening on the insulating layer covering the chip to access at least one contact area; applying at least one metallization layer overlying the insulating layer on the substrate and the chip connecting the metallization layer on the substrate to the at least one another contact area on the chip; applying a second insulating layer overlying the metallization layer on the at least one chip; applying at least one interfacial layer; applying at least one rigid substrate overlying the interfacial layer; and applying at least one secondary protective layer overlying the rigid substrate.
Owner:AMF NANO

Novel non-refrigeration infrared sensor wafer-level packaging method compatible with CMOS (Complementary Metal Oxide Semiconductor)-MEMS (Micro-Electro-Mechanical System)

The invention relates to a novel non-refrigeration infrared sensor wafer-level packaging method compatible with a CMOS (Complementary Metal Oxide Semiconductor)-MEMS (Micro-Electro-Mechanical System). The method comprises the following steps of: (1) plating a second sacrifice layer on a device wafer, then preparing a structural material and a sealing material, and releasing two sacrifice layers on the device wafer; (2) plating antireflection films on the two faces of a first seal-capping wafer, and plating the sealing material and a degasifying agent on the first seal-capping wafer; (3) bonding the device wafer with the first seal-capping wafer; (4) then bonding a second seal-capping wafer on the back face of the device wafer; and (5) scribing. According to the novel non-refrigeration infrared sensor wafer-level packaging method provided by the invention, the entire technical process of the device wafer can be completed in a factory by improving a process sequence, so as to be entirely compatible with a CMOS process. According to the novel non-refrigeration infrared sensor wafer-level packaging method with CMOS-MEMS, the large-scale production is easier to realize, so that the final prober cost is lower.
Owner:WUHAN GUIDE INFRARED CO LTD

Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures

A method of forming Monolithic CMOS-MEMS hybrid integrated, packaged structures includes the steps of providing: providing at least one semiconductor substrate having a CMOS device area including dielectric layers and metallization layers; applying at least one protective layer overlying the CMOS device area; forming at least one opening on the protective layer and patterning the dielectric and metallization layers to access the semiconductor substrate; forming at least one opening on the semiconductor substrate by etching the dielectric and metallization layers; applying at least one filler layer in the at least one opening on the semiconductor substrate; positioning at least one chip on the filler layer, the chip including a prefabricated front face and a bare backside; applying a first insulating layer covering the front face of the chip providing continuity from the semiconductor substrate to the chip; forming at least one via opening on the insulating layer covering the chip to access at least one contact area; applying at least one metallization layer overlying the insulating layer on the substrate and the chip connecting the metallization layer on the substrate to the at least one another contact area on the chip; applying a second insulating layer overlying the metallization layer on the at least one chip; applying at least one interfacial layer; applying at least one rigid substrate overlying the interfacial layer; and applying at least one secondary protective layer overlying the rigid substrate.
Owner:AMF NANO

Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures

A method of forming Monolithic CMOS-MEMS hybrid integrated, packaged structures includes the steps of providing: providing at least one semiconductor substrate having a CMOS device area including dielectric layers and metallization layers; applying at least one protective layer overlying the CMOS device area; forming at least one opening on the protective layer and patterning the dielectric and metallization layers to access the semiconductor substrate; forming at least one opening on the semiconductor substrate by etching the dielectric and metallization layers; applying at least one filler layer in the at least one opening on the semiconductor substrate; positioning at least one chip on the filler layer, the chip including a prefabricated front face and a bare backside; applying a first insulating layer covering the front face of the chip providing continuity from the semiconductor substrate to the chip; forming at least one via opening on the insulating layer covering the chip to access at least one contact area; applying at least one metallization layer overlying the insulating layer on the substrate and the chip connecting the metallization layer on the substrate to the at least one another contact area on the chip; applying a second insulating layer overlying the metallization layer on the at least one chip; applying at least one interfacial layer; applying at least one rigid substrate overlying the interfacial layer; and applying at least one secondary protective layer overlying the rigid substrate.
Owner:AMF NANO

Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures

A method of forming Monolithic CMOS-MEMS hybrid integrated, packaged structures includes the steps of providing: providing a semiconductor substrate with pre-fabricated cmos circuits on the front side and a polished back-side with through substrate conductive vias; forming at least one opening in the polished backside of the semiconductor substrate by appropriately protecting the front-side; applying at least one filler material in the at least one opening on the semiconductor substrate; positioning at least one prefabricated mems, nems or cmos chip on the filler material, the chip including a front face and a bare back face with the prefabricated mems / nems chips containing mechanical and dielectric layers; applying at least one planarization layer overlying the substrate, filler material and the chip; forming at least one via opening on a portion of the planarization layer interfacing pads on the chip and the through substrate conductive vias; applying at least one metallization layer overlying the planarization layer on the substrate and the chip connecting the through substrate conductive vias to the at least one chip; applying at least one second insulating layer overlying the metallization layer; performing at least one micro / nano fabrication etching step to release the mechanical layer on the prefabricated mems / nems chips; positioning protective cap to package the integrated device over the mems / nems device area on the pre-fabricated chips.
Owner:AMF NANO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products