Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

118 results about "Cytokine receptor" patented technology

Cytokine receptors are receptors that bind to cytokines. In recent years, the cytokine receptors have come to demand the attention of more investigators than cytokines themselves, partly because of their remarkable characteristics, and partly because a deficiency of cytokine receptors has now been directly linked to certain debilitating immunodeficiency states. In this regard, and also because the redundancy and pleiotropy of cytokines are a consequence of their homologous receptors, many authorities are now of the opinion that a classification of cytokine receptors would be more clinically and experimentally useful.

Tissue protective peptides and uses thereof

The present invention is directed to novel tissue protective peptides. The tissue protective peptides of the invention may bind to a tissue protective receptor complex. In particular, the present invention is drawn to tissue protective peptides derived from or sharing consensus sequences with portions of cytokine receptor ligands, including Erythropoietin (EPO), that are not involved in the binding of the ligand to the receptor complex, e.g., to the EPO receptor homodimer. Accordingly, the tissue protective peptides of the invention are derived from the amino acid sequences of regions of cytokine receptor ligands that are generally located on or within the region of the ligand protein that is opposite of the receptor complex, i.e., are generally derived from amino acid sequences of regions of the ligand protein that face away from the receptor complex while the ligand is bound to the receptor. The invention is further directed to the consensus sequences for use in engineering a synthetic tissue protective peptide. These tissue protective peptides also include fragments, chimeras, as well as peptides designed to mimic the spatial localization of key amino acid residues within the tissue protective receptor ligands, e.g., EPO. The invention further encompasses methods for treating or preventing a disease or disorder using tissue protective peptides of the current invention. The invention also encompasses methods for enhancing excitable tissue function using tissue protective peptides of the current invention.
Owner:ARAIM PHARMA INC

Nucleic acids and polypeptides useful for diagnosing and treating complications of pregnancy

ActiveUS20060166277A1Diagnosing and effectively treatingSave maternalMicrobiological testing/measurementDisease diagnosisPregnancyUdp glycosyltransferase
Disclosed herein are methods for diagnosing or treating pregnancy related hypertensive disorders that include the use of a polypeptide or a nucleic acid encoding a polypeptide selected from the following: follistatin related protein, interleukin 8, inhibin A, VEGF-C, angiogenin, beta fertilin, hypothetical protein, leukocyte associated Ig-like receptor secreted protein, erythroid differentiation protein, adipogenesis inhibitory factor, corticotropin releasing factor binding protein, alpha-1 anti-chymotrypsin, insulin-like growth factor binding protein-5, CD33L, cytokine receptor like factor 1, platelet derived endothelial growth factor, lysyl hydroxylase isoform 2, stanniocalcin precursor, secreted frizzled related protein, galectin-3, alpha defensin, ADAM-TS3, cholecystokinin precursor, interferon stimulated T-cell alpha chemoattractant precursor, azurocidin, sperminine oxidase, UDP glycosyltransferase 2 family polypeptide B28, neurotrophic tyrosine kinase receptor 2, neutral endopeptidase, CDC28 protein kinase regulatory subunit 2, beta glucosidase, lanosterol synthase, calcium/calmodulin-dependent serine protein kinase, estrogen receptor-alternatively spliced transcript H, chemokine (CX3C motif) receptor 1, tyrosinase-related protein 1, hydoxy-delta-5-steroid dehyrogenase, dihydropyramidinase-like-4, and cytochrome P450-family 11.
Owner:BETH ISRAEL DEACONESS MEDICAL CENT INC

Tissue protective peptides and uses thereof

The present invention is directed to novel tissue protective peptides. The tissue protective peptides of the invention may bind to a tissue protective receptor complex. In particular, the present invention is drawn to tissue protective peptides derived from or sharing consensus sequences with portions of cytokine receptor ligands, including Erythropoietin (EPO), that are not involved in the binding of the ligand to the receptor complex, e.g., to the EPO receptor homodimer. Accordingly, the tissue protective peptides of the invention are derived from the amino acid sequences of regions of cytokine receptor ligands that are generally located on or within the region of the ligand protein that is opposite of the receptor complex, i.e., are generally derived from amino acid sequences of regions of the ligand protein that face away from the receptor complex while the ligand is bound to the receptor. The invention is further directed to the consensus sequences for use in engineering a synthetic tissue protective peptide. These tissue protective peptides also include fragments, chimeras, as well as peptides designed to mimic the spatial localization of key amino acid residues within the tissue protective receptor ligands, e.g., EPO. The invention further encompasses methods for treating or preventing a disease or disorder using tissue protective peptides of the current invention. The invention also encompasses methods for enhancing excitable tissue function using tissue protective peptides of the current invention.
Owner:ARAIM PHARMA INC

Hypoxia-inducible chimeric antigen receptor capable of achieving specific activation of tumor microenvironment

The invention belongs to the technical field of biomedical science, and relates to a hypoxia-inducible chimeric antigen receptor capable of achieving specific activation of a tumor microenvironment. The structural domain of the hypoxia-inducible chimeric antigen receptor comprises: (1) one or more structural domains with specific combination of target antigens; (2) a structural domain in an extracellular spacer region; (3) a transmembrane structural domain; (4) one or more costimulatory signal structural domain and a cytokine receptor signal-transduction structural domain; (5) an intracellularsignal-transduction structural domain; and (6) an oxygen-dependent degradation structural domain. Once the hypoxia-inducible chimeric antigen receptor is exposed to an anoxic environment, efficient expression of the Hi-CAR on effect cell membranes is achieved, and specific recognition of target antigens is achieved, so that the specific activation property of the anoxic microenvironment is achieved; and since the anoxic situation of the tumor microenvironment is more significant than that of normal tissue, damage to the normal tissue can be reduced significantly, and meanwhile the activity ofspecific killing of tumors is improved.
Owner:SHANGHAI PUBLIC HEALTH CLINICAL CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products