Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

69 results about "Merocyanine dye" patented technology

Cyanine dyes

The invention provides a novel class of cyanine dyes that are functionalized with sulfonic acid groups and a linker moiety that facilitates their conjugation to other species and substituent groups which increase the water-solubility, and optimize the optical properties of the dyes. Also provided are conjugates of the dyes, methods of using the dyes and their conjugates and kits including the dyes and their conjugates.
Owner:PACIFIC BIOSCIENCES

Photoelectric conversion device, imaging device, and method for driving photoelectric conversion device

A photoelectric conversion device includes, in the following order: a first electrode; an electron blocking layer; a photoelectric conversion layer containing a merocyanine dye; a hole blocking layer; and a transparent electrode as a second electrode, and an absorption maximum wavelength in a thin film absorption spectrum of the photoelectric conversion layer containing a merocyanine dye is within a range of from 400 to 520 nm.
Owner:FUJIFILM CORP

Functionalized cyanine dyes (PEG)

The invention provides a novel class of cyanine dyes that are functionalized with a linker moiety that facilitates their conjugation to other species and substituent groups which increase the water-solubility, and optimize the optical properties of the dyes. Also provided are conjugates of the dyes, methods of using the dyes and their conjugates and kits including the dyes and their conjugates.
Owner:PACIFIC BIOSCIENCES

Lithographic printing plate precursor, lithographic printing method, and novel cyanine dye

InactiveUS20070056457A1Improve visibilityExcellent in on-machine development propertyMethine/polymethine dyesPlate printingCyanineImage recording
A lithographic printing plate precursor comprising a support and an image-recording layer which contains (A) a cyanine dye including a solvent-soluble group and having an absorption maximum in an infrared wavelength region and is capable of being removed with at least one of printing ink and an aqueous component.
Owner:FUJIFILM CORP

Method for making positive working printing plates from a heat mode sensitive image element

According to the present invention there is provided a method for making lithographic printing plates including the following steps a) preparing a heat mode imaging element consisting of a lithographic base with a hydrophilic surface and a top layer which top layer is sensitive to IR-radiation, comprises a polymer, soluble in an aqueous alkaline solution and is unpenetrable for an alkaline developer containing SiO2 as silicates; b) exposing imagewise said heat mode imaging element to IR-radiation; c) developing said imagewise exposed heat mode imaging element with said alkaline developer so that the exposed areas of the top layer are dissolved and the unexposed areas of the top layer remain undissolved characterized in that said top layer includes an IR-dye selected from the group consisting of indoaniline dyes, cyanine dyes, merocyanine dyes, oxonol dyes, porphine derivatives, anthraquinone dyes, merostyryl dyes, pyrylium compounds, diphenyl and triphenyl azo compounds and squarylium derivatives.
Owner:EASTMAN KODAK CO

Lithographic printing method and presensitized plate

Disclosed is a presensitized plate composed of a support having thereon an image recording layer which includes: an infrared absorber (A) that is a cyanine dye having at least one fused ring composed of a nitrogen-containing heterocycle in combination with an aromatic ring or a second heterocycle, and having on the aromatic ring or second heterocycle an electron-withdrawing group or a heavy atom-containing group, a radical generator (B), and a radical-polymerizable compound (C), and which is removable with printing ink and / or dampening water. The presensitized of the present invention can be imaged with an infrared light-emitting laser to directly record an image from digital data on a computer or the like and is then subjected to on-machine development without carrying out a development step, which is capable of providing a large number of good impressions with a practical amount of energy.
Owner:FUJIFILM CORP

Selective detection of proteins that contain two or more alpha-helical transmembrane domains

Embodiments of the present invention provide a staining solution and of method of using the staining solution for selectively detecting proteins that contain two or more α-helical transmembrane domains. The staining solution comprises a lipophilic dyes and at least about a 30% hydrophobic solvent. The dyes of the present are represented by the general formula A-B-E wherein A is a nitrogen heterocycle, B is a bridge moiety and E is an electron pair accepting moiety that comprises either a carbonyl or nitrogen atom. In one embodiment these lipophilic dyes are merocyanine dye, a cyanine dye, a styryl dye or a carbazolylvinyl dye.
Owner:LIFE TECH CORP

Method for making positive working printing plates from a heat mode sensitive image element

According to the present invention there is provided a method for making lithographic printing plates including the following stepsa) preparing a heat mode imaging element having on a lithographic base with a hydrophilic surface a first layer including a polymer, soluble in an aqueous alkaline solution and a top layer on the same side of the lithographic base as the first layer which top layer is sensitive to IR-radiation and is unpenetrable for an alkaline developer containing SiO2 as silicates;b) exposing imagewise said heat mode imaging element to IR-radiation;c) developing said imagewise exposed heat mode imaging element with said alkaline developer so that the exposed areas of the top layer and the underlying areas of the first layer are dissolved and the unexposed areas of the first layer remain undissolved characterized in that said top layer includes an IR-dye in an amount between 1 and 100% by weight of the total amount of said IR-sensitive top layer selected from the group consisting of indoaniline dyes, cyanine dyes, merocyanine dyes, oxonol dyes, porphine derivatives, anthraquinone dyes, merostyryl dyes, pyrylium compounds, diphenyl and triphenyl azo compounds and squarylium derivatives.
Owner:EASTMAN KODAK CO

Correlation of anti-cancer activity of dyes with redox potentials

The present invention relates to a method for selecting pharmacological compounds for selective inhibition of cancer cells comprising identifying a compound, determining the reduction potential (ER) of the compound, and selecting the compound which has a reduction potential from −1.1 to −0.8 volts. The invention also relates to a pharmacological compound comprising at least one cyanine dye or merocyanine dye, wherein the dye has at least one cationic substituent, wherein the dye has a reduction potential of from—1.1 to 0.8 volts, and wherein the pharmacological compound demonstrates selective inhibition of cancer cells.
Owner:CARESTREAM HEALTH INC

Cyanine dye having reduced visible absorption

The present invention provides an IR-absorbing macrocyclic cyanine dye, wherein said dye comprises at least one moiety for reducing intermolecular interactions, thereby minimizing absorption of visible light.Dyes of this type are especially suitable for use in netpage and Hyperlabel systems.
Owner:BASF AG

Water-soluble fluoro-substituted cyanine dyes as reactive fluorescence labelling reagents

Disclosed are cyanine dyes that are useful for labelling and detecting biological and other materials. The dyes are of formula (I): in which at least one of groups R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 R11, R12, R13 and R14 is -L-M or -L-P, where L is a linking group, M is a target bonding group and P is a conjugated component, and at least one of groups R3, R4, R5, R6, R7, R8, R9 and R10 comprises fluorine. The use of cyanine dyes substituted by fluorine and having additional substitution with three or more sulphonic acid groups for labelling biological target molecules results in a labelled product in which there is reduced dye-dye aggregation and improved photostability, compared with cyanine dyes having no such substitutions. The dyes of the present invention are particularly useful in assays involving fluorescence detection where continual or repeated excitation is a requirement, for example in kinetic studies, or in microarray analyses where microarray slides may need to be reanalysed over a period of days.
Owner:GLOBAL LIFE SCI SOLUTIONS GERMANY GMBH

Heteroarylcyanine dyes

ActiveUS20140080127A1Useful level of resolutionMitigate one or more of these factorsMethine/polymethine dyesSugar derivativesMoietyMerocyanine dye
The present invention provides heteroaryl functionalized cyanine dyes including a reactive functional moiety, or which are conjugated to a carrier molecule.
Owner:PACIFIC BIOSCIENCES

Use of cyanine dyes for the diagnosis of proliferative diseases

The present invention concerns the use of the cyanine dye SF64 for the diagnosis of proliferative diseases upon administration of less than 5 mg / kg body weight.
Owner:BAYER SCHERING PHARMA AG

Site-specific labelling of proteins using cyanine dye reporters

The present invention therefore provides new cyanine dye reagents and methods that afford direct attachment of the cyanine dye reporter to either the N-terminus or C-terminus of a synthetic or recombinant peptide or protein and their derivatives, in a site-specific manner, coupled with purification of the resultant labelled molecule.
Owner:GE HEALTHCARE LTD

Nir absorption and color compensating compositions

Disclosed herein is a composition for use as a film on an image display filter. In some embodiments, the composition includes a cyanine dye exhibiting an absorption maximum in the wavelength region from about 830 to about 880 nm or from about 580 to about 600 nm and an anthraquinone dye comprising an anthraquinone compound substituted with an amino group in one or more positions selected from the 1-, 4-, 5-, and 8-position.
Owner:CHEIL IND INC

Image device and imaging apparatus

ActiveUS20170023713A1Reduces thickness of moduleLow infrared light transmittanceMethine/polymethine dyesOptical filtersCarbonyl groupPhenyl group
An imaging device, comprising: an infrared light absorption layer including a cyanine dye represented by Chemical Formula (A) below: wherein R1 and R2 are selected from the group consisting of: a chain alkyl group,a cyclic alkyl group, a phenyl group, and a benzyl group; wherein the chain alkyl group and the cyclic alkyl group including at least one group member selected from the group consisting of: 1) a first group having one or more hydrogen atoms in a first alkyl group substituted with at least one functional group selected from the group consisting of: a halogen atom, an alkoxy group, an alkanoloxy group, an amino group, a thiol group, and a mercapto group; 2) a second group having at least one reactive group selected from the group consisting of: a vinyl group, an acrylic group, a carbonyl group, a carboxyl group, an alkenyl group, an alkenyloxy group, an alkoxycarbonyl group, a nitrile group, a carboxyl group, a carbonyl group, a sulfonyl group, a sulfamoyl group, a carbamoyl group, a benzoyloxy group, and a cyano group,wherein the reactive group is any one of introduced at a terminal alkyl group of at least one of the chain alkyl group and the cyclic alkyl group and positioned two or more carbon atoms away from an indoline ring; 3)an unsubstituted chain alkyl group; and 4) an unsubstituted cyclic alkyl group; and wherein X− represents an anion.
Owner:SONY CORP

Compound for photoresist, photoresist liquid, and etching method using the same

The present invention relates to a compound for photoresist, selected from the group consisting of a compound comprising an oxonol dye skeleton, a cyanine dye, a styryl dye, a compound comprising a merocyanine dye skeleton, a compound comprising a phthalocyanine dye skeleton, an azo compound, and a complex compound of an azo compound and a metal ion. The present invention further provides a photoresist liquid comprising at least one of the compound for photoresist and a method of etching a surface being processed using the photoresist liquid.
Owner:FUJIFILM CORP

Methods of using cyanine dyes for the detection of analytes

The present invention concerns a method of measuring the concentration of an analyte in an aqueous solution that comprises the steps of: obtaining an aqueous solution containing an analyte, providing a cyanine indicator, placing the aqueous solution in fluid communication with the cyanine indicator, measuring a detectable property change of the cyanine indicator, and comparing the detectable property change of the cyanine indicator with a calibration curve of the detectable property change of samples containing known concentrations of the analyte to determine the concentration of the analyte, wherein the detectable property change is proportional to the concentration of the analyte in said aqueous solution.
Owner:GENERAL ELECTRIC CO

Cyanine dye having reduced visible absorption

ActiveUS20060030703A1Reducing intermolecular interactionMinimize absorptionReactive dyesInksCyanineMerocyanine dye
The present invention provides an IR-absorbing macrocyclic cyanine dye, wherein said dye comprises at least one moiety for reducing intermolecular interactions, thereby minimizing absorption of visible light. Dyes of this type are especially suitable for use in netpage and Hyperlabel systems.
Owner:BASF AG

Quasi-solid-state photoelectrochemical solar cell formed using inkjet printing and nanocomposite organic-inorganic material

Methods and apparatus are disclosed regarding photoelectrochemical solar cells formed using inkjet printing and nanocomposite organic-inorganic materials, such as for converting solar energy into electricity. An exemplary solid photoelectrochemical solar cell formation includes thin layers of nanocomposite organic-inorganic materials. A specific exemplary solid photoelectrochemical solar cell may include: a negative electrode comprising a transparent electroconductive glass plate; a thin transparent film of mesoporous nanocrystalline titanium dioxide of controlled thickness above the negative electrode, formed by dip-coating, spin-coating or inkjet printing, and having a photosensitizer dye comprising a ruthenium organometallic complex, a merocyanine dye, or a hemicyanine dye; a layer of a solid gel electrolyte formed above the titanium dioxide layer and including a nanocomposite organic-inorganic material and a redox couple; and a positive electrode comprising a second electroconductive glass plate having a thin layer of deposited electrocatalyst made of platinum, carbon, or both, in the form of nanostructures, including nanoparticles, nanotubes, conjugated conductive polymers, or their mixtures.
Owner:BRITE HELLAS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products