Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

221 results about "Nuclear medicine imaging" patented technology

Generating Attenuation Correction Maps for Combined Modality Imaging Studies and Improving Generated Attenuation Correction Maps Using MLAA and DCC Algorithms

The DCC (Data Consistency Condition) algorithm is used in combination with MLAA (Maximum Likelihood reconstruction of Attenuation and Activity) to generate extended attenuation correction maps for nuclear medicine imaging studies. MLAA and DCC are complementary algorithms that can be used to determine the accuracy of the mu-map based on PET data. MLAA helps to estimate the mu-values based on the biodistribution of the tracer while DCC checks if the consistency conditions are met for a given mu-map. These methods are combined to get a better estimation of the mu-values. In gated MR/PET cardiac studies, the PET data is framed into multiple gates and a series of MR based mu-maps corresponding to each gate is generated. The PET data from all gates is combined. Once the extended mu-map is generated the central region is replaced with the MR based mu-map corresponding to that particular gate. On the other hand, in dynamic PET studies the uptake in the patient's arms reaches a steady state only after the tracer distributes throughout the body. Hence, for dynamic scans, the projection data of all frames is summed and used to generate the MLAA based extended mu-map for all frames.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Nuclear medicine imaging apparatus and a method for generating image data

The present invention provides a nuclear medicine imaging apparatus and image data generation method that achieves restarting of the generation of projection data and at an early stage while monitoring a variation of count values for detecting an occurrence of non-permissible body movement of a patient. The image processing apparatus consistent with the present invention detects a pair of gamma-rays successively emitted from an object with a radioactive isotope through a pair of detector modules in a data detecting unit. A data processing unit and an incident direction calculating unit in the image processing apparatus respectively calculate a gamma-ray detection position and a gamma-ray incident direction based on the acquired detection signals. A projection data generating unit in the apparatus generates monitoring projection data based on each count value of the detection signals in correspondence to the gamma-ray detection position and the gamma-ray incident direction. A projection data monitoring unit calculates a body movement index of the object by comparing count values of the monitoring projection data that are generated in each of two preferably adjoining monitoring periods. A system control unit generates an alarm signal for performing repetition of the monitoring projection data when the body movement index exceeds a threshold value and displays the alarm signal on a display unit.
Owner:TOSHIBA MEDICAL SYST CORP

Respiration correction technique in positron emission tomography

InactiveCN101702232AImprove the correct diagnosis rateCompensate for image artifactsImage enhancement3D-image renderingDetector geometryCorrection technique
The invention relates to a respiration correction technique in positron emission tomography, in particular to a technique for correcting the artifact of respiration tomography on the basis of the sensitivity characteristics of a three-dimensional positron emission detector, belonging to the field of nuclear medical tomography. The correction method provided by the invention can effectively compensate for the image artifact caused by respiration, thereby improving the diagnostic accuracy of doctors. The correction method comprises the following steps: frame segmentation is carried out on the acquired dynamic data by using the variation characteristics of the geometric sensitivity of a scanning detector in the three-dimensional PET, wherein the number of intra-frame photons can reflect the phase position of the organ motion, and the number of photons of each phase position has a linear relation with the motion displacement thereof; accordingly, each phase position is moved to certain reference phase position point for correcting; and the image reconstructed at last constitutes the image artifact caused by the respiration in the PET improved by correction. Compared with the prior art like the gating correction technique, the method of the invention dispenses with hardware equipment and extra preparation by patients or clinic before scanning, therefore, the method is easier, more effective and more reliable in actual application.
Owner:KUNMING UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products