Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

55 results about "Depth of interaction" patented technology

What is Depth Of Interaction (DOI) 1. Depth inside the scintillator crystal where a photon interacts and produces a light distribution.

Three dimensional radiation detector

A pixelated detector assembly comprising a stack of thin detector crystals, each detector crystal having a pair of planar surfaces bound by edges substantially thinner than the dimensions of the surfaces. The stack is disposed such that the radiation to be detected is incident on one set of edges of the stack of detector crystals. The dimension of the planar surfaces in the general direction of incidence of the radiation incidence is sufficient to ensure that substantially all of the high energy photons to be detected are absorbed within the depth of the detector assembly. Each of the detector crystals has a two-dimensional pixelated anode array formed on one of its planar surfaces. A cathode is formed on its opposite planar surface, preferably covering substantially all of the surface. The position of interaction of a photon in the plane perpendicular to the direction of the incident radiation, is determined by which of the detector crystals in the stack detects the absorption, and by which of the rows of pixelated anodes in that crystal detects the absorption. The depth of interaction of a photon is determined by the location of the particular anode pixel in the above-mentioned row of pixelated anodes where the photon absorption is detected. The detector assembly is thus able to detect the point of interaction of a photon in all three dimensions.
Owner:ORBOTECH LTD

Three dimensional radiation detector

A pixelated detector assembly comprising a stack of thin detector crystals, each detector crystal having a pair of planar surfaces bound by edges substantially thinner than the dimensions of the surfaces. The stack is disposed such that the radiation to be detected is incident on one set of edges of the stack of detector crystals. The dimension of the planar surfaces in the general direction of incidence of the radiation incidence is sufficient to ensure that substantially all of the high energy photons to be detected are absorbed within the depth of the detector assembly. Each of the detector crystals has a two-dimensional pixelated anode array formed on one of its planar surfaces. A cathode is formed on its opposite planar surface, preferably covering substantially all of the surface. The position of interaction of a photon in the plane perpendicular to the direction of the incident radiation, is determined by which of the detector crystals in the stack detects the absorption, and by which of the rows of pixelated anodes in that crystal detects the absorption. The depth of interaction of a photon is determined by the location of the particular anode pixel in the above-mentioned row of pixelated anodes where the photon absorption is detected. The detector assembly is thus able to detect the point of interaction of a photon in all three dimensions.
Owner:ORBOTECH LTD

Method of improving PET (positron emission tomography) image reconstruction quality by constructing virtual DOI (depth of interaction) and corresponding system matrix

InactiveCN108428253AHigh-resolutionUnrestricted geometric distributionReconstruction from projectionLines of responseSystem matrix
The invention discloses a method of improving PET (positron emission tomography) image reconstruction quality by constructing a virtual DOI (depth of interaction) and a corresponding system matrix. The method comprises the following steps: 1) virtual DOIs are divided: a scintillation crystal in a PET detector ring is divided into a plurality of regions which correspond to different DOIs; 2) the detection probability of a virtual DOI is calculated: the virtually-divided DOI regions are paired, and the probability of each pair being detected at a different signal source position is calculated; 3) a virtual LOR (Line of response) event in the virtual DOI is divided: one LOR event in one original pair of crystals is divided to multiple sub events in the virtual DOI; 4) a conventional system matrix is optimized: multiple factors that affect the image reconstruction quality are considered; 5) image reconstruction is carried out: a statistical iterative algorithm is used to reconstruct an image; and 6) a GPU platform is used for distributed operation, and the data processing time can be greatly reduced. Through the method disclosed in the invention, the resolution of PET-class equipment after image reconstruction can be greatly improved, the location of a tumor can be positioned accurately, and important clinical value and significance are achieved.
Owner:WUHAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products