Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

55results about "Magnetostrictive relays" patented technology

Device Having a Shape Memory Element

Conventional devices have a valve needle and a shape memory element which, by the application of a controllable magnetic field, executes a control stroke travel that operates the actuator, and having a coil that excites the magnetic field which is situated in a magnet housing which, at its end face, is bordered with respect to an actuating axis by a front wall in each case, the front walls having a through opening radially within the coil. It is a disadvantage that the magnetic field excited around the coil is conducted unfavorably, so that at most a slight magnetic field develops in the shape memory element. The shape memory element has a magnetic field flowing through it, in the direction of its longitudinal extension, if at all. Since the shape memory element has a high magnetic resistance and is developed to be very long in the axial direction, only a very weak magnetic field can be induced in the shape memory element. In response to the magnetic field that is weak at most, the shape memory element can generate only a very slight lift of the valve needle. In the device according to the present invention, a strong magnetic field is conducted through the shape memory elements, and in this way, a large control stroke travel is achieved. The shape memory element(s) is/are positioned generally only in the through opening(s).
Owner:ROBERT BOSCH GMBH

Device having a shape memory element

Conventional devices have a valve needle and a shape memory element which, by the application of a controllable magnetic field, executes a control stroke travel that operates the actuator, and having a coil that excites the magnetic field which is situated in a magnet housing which, at its end face, is bordered with respect to an actuating axis by a front wall in each case, the front walls having a through opening radially within the coil. It is a disadvantage that the magnetic field excited around the coil is conducted unfavorably, so that at most a slight magnetic field develops in the shape memory element. The shape memory element has a magnetic field flowing through it, in the direction of its longitudinal extension, if at all. Since the shape memory element has a high magnetic resistance and is developed to be very long in the axial direction, only a very weak magnetic field can be induced in the shape memory element. In response to the magnetic field that is weak at most, the shape memory element can generate only a very slight lift of the valve needle. In the device according to the present invention, a strong magnetic field is conducted through the shape memory elements, and in this way, a large control stroke travel is achieved. The shape memory element(s) is / are positioned generally only in the through opening(s).
Owner:ROBERT BOSCH GMBH

Insertion-type liquid metal latching relay array

An electrical relay array using conducting liquid in the switching mechanism. The relay array is amenable to manufacture by micro-machining techniques. Each element of the relay array uses an actuator, such as a piezoelectric element, to cause a switch actuator to insert into a cavity in a static switch contact structure. The cavity has sides and a pad on its end that are wettable by the conducting liquid. The cavity is filled with the conducting liquid, which may be liquid metal. Insertion of the switch actuator into the cavity causes the conducting liquid to be displaced outward and come in contact with the contact pad on the switch actuator. The volume of conducting liquid is chosen so that when the actuator returns to its rest position, the electrical contact is maintained by surface tension and by wetting of the contact pads on both the static switch contact structure and the actuator. When the switch actuator retracts away from the static switch contact structure, the available volume for conducting liquid inside the fixed switch contact structure increases and the combination of the movement of the conducting liquid into the cavity and the contact pad on the switch actuator moving away from the bulk of the conducting liquid causes the conducting liquid connection between the fixed and moving contact pads to be broken. When the switch actuator returns to its rest position, the contact remains electrically open because there is not enough conducting liquid to bridge the gap without being disturbed. The high frequency capability is provided by the additional conductors in the assembly, which act to make the switch a coaxial structure.
Owner:AGILENT TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products