Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42results about How to "Training can be simplified" patented technology

Coupling mechanism for a drive train of a hair cutting appliance

The present invention relates to a drive train (50) of a hair cutting appliance (10) and to a self-aligning coupling linkage (66) for a drive train (50). The coupling linkage (66) comprises a driving shaft and a non-aligning output shaft (56), said coupling linkage (66) comprising: a first driving coupling element (78) arranged to be driven by a driving shaft (54), particularly by a motor shaft, a transmission shaft (70), particularly a rigid transmission shaft (70), comprising a first drivable coupling element (80) at a first end and a second driving coupling element (86) at a second end thereof, wherein first driving coupling element (78) engages the first drivable coupling element (80) for rotatingly driving the transmission shaft (70), thereby forming a first pivoting joint (76), wherein the second driving coupling element (86) is arranged to engage a second drivable coupling element (88) of an output shaft (56), wherein the first driving coupling element (78) and the first drivable coupling element (80) define a male connector comprising an external polygonal profile (90), viewed in a cross-sectional plane perpendicular to a longitudinal axis, and a female connector comprising an internal polygonal profile (102), and wherein the external polygonal profile (90) of the male connector, viewed in a longitudinal axial section, is at least sectionally provided with convexly shaped flanks (92).
Owner:KONINKLJIJKE PHILIPS NV

System and method for minimally invasive injection foam

A method for filling a cavity with an expanding insulating foam component includes the following. First, providing a closed cavity comprising at least one elongated wall surface that extends along a first direction and includes first and second opposite sides, a top side and a bottom side. Next, forming a plurality of openings in the elongated wall surface arranged along the first direction and being alternating close to the first or the second opposite sides. Next, inserting a dispense tube through a first opening of the plurality of openings, and injecting a first portion of the expanding insulating foam into the closed cavity. The first opening is located close to the bottom side and close to the first side of the elongated wall surface. The injected foam expands along the bottom side and the first side and forms a first sloped top surface that has a positive slope angle. Next, inserting the dispense tube through a second opening of the plurality of openings located close and above the first opening and close to the opposite second side, and injecting a second portion of the expanding insulating foam into the closed cavity. The injected foam expands along the first sloped top surface and the second side and forms a second sloped top surface that has a negative slope angle.
Owner:CERTAIN TEED LLC

Coupling mechanism for a drive train of a hair cutting appliance

The present invention relates to a drive train (50) of a hair cutting appliance (10) and to a self-aligning coupling linkage (66) for a drive train (50). The coupling linkage (66) comprises a driving shaft and a non-aligning output shaft (56), said coupling linkage (66) comprising: a first driving coupling element (78) arranged to be driven by a driving shaft (54), particularly by a motor shaft, a transmission shaft (70), particularly a rigid transmission shaft (70), comprising a first drivable coupling element (80) at a first end and a second driving coupling element (86) at a second end thereof, wherein first driving coupling element (78) engages the first drivable coupling element (80) for rotatingly driving the transmission shaft (70), thereby forming a first pivoting joint (76), wherein the second driving coupling element (86) is arranged to engage a second drivable coupling element (88) of an output shaft (56), wherein the first driving coupling element (78) and the first drivable coupling element (80) define a male connector comprising an external polygonal profile (90), viewed in a cross-sectional plane perpendicular to a longitudinal axis, and a female connector comprising an internal polygonal profile (102), and wherein the external polygonal profile (90) of the male connector, viewed in a longitudinal axial section, is at least sectionally provided with convexly shaped flanks (92).
Owner:KONINKLJIJKE PHILIPS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products