Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

72 results about "K space trajectory" patented technology

Method and device for reconstructing a sequence of magnetic resonance images

A method for reconstructing a sequence of magnetic resonance (MR) images of an object under investigation, includes the steps of (a) providing a series of sets of image raw data including an image content of the MR images to be reconstructed, the image raw data being collected with the use of at least one radiofrequency receiver coil of a magnetic resonance imaging (MRI) device, wherein each set of image raw data includes a plurality of data samples being generated with a gradient-echo sequence, in particular a FLASH sequence, that spatially encodes an MRI signal received with the at least one radiofrequency receiver coil using a non-Cartesian k-space trajectory, each set of image raw data includes a set of homogeneously distributed lines in k-space with equivalent spatial frequency content, the lines of each set of image raw data cross the center of k-space and cover a continuous range of spatial frequencies, and the positions of the lines of each set of image raw data differ in successive sets of image raw data, and (b) subjecting the sets of image raw data to a regularized nonlinear inverse reconstruction process to provide the sequence of MR images, wherein each of the MR images is created by a simultaneous estimation of a sensitivity of the at least one receiver coil and the image content and in dependency on a difference between a current estimation of the sensitivity of the at least one receiver coil and the image content and a preceding estimation of the sensitivity of the at least one receiver coil and the image content.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV

Method and device for reconstructing a sequence of magnetic resonance images

A method for reconstructing a sequence of magnetic resonance (MR) images of an object under investigation, includes the steps of (a) providing a series of sets of image raw data including an image content of the MR images to be reconstructed, the image raw data being collected with the use of at least one radiofrequency receiver coil of a magnetic resonance imaging (MRI) device, wherein each set of image raw data includes a plurality of data samples being generated with a gradient-echo sequence, in particular a FLASH sequence, that spatially encodes an MRI signal received with the at least one radiofrequency receiver coil using a non-Cartesian k-space trajectory, each set of image raw data includes a set of homogeneously distributed lines in k-space with equivalent spatial frequency content, the lines of each set of image raw data cross the center of k-space and cover a continuous range of spatial frequencies, and the positions of the lines of each set of image raw data differ in successive sets of image raw data, and (b) subjecting the sets of image raw data to a regularized nonlinear inverse reconstruction process to provide the sequence of MR images, wherein each of the MR images is created by a simultaneous estimation of a sensitivity of the at least one receiver coil and the image content and in dependency on a difference between a current estimation of the sensitivity of the at least one receiver coil and the image content and a preceding estimation of the sensitivity of the at least one receiver coil and the image content.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV

Method and device for reconstructing a sequence of mr images using a regularized nonlinear inverse reconstruction process

A method for reconstructing a sequence of magnetic resonance (MR) images of an object under investigation, comprises the steps of (a) providing a series of sets of image raw data including an image content of the MR images to be reconstructed, said image raw data being collected with the use of at least one radiofrequency receiver coil of a magnetic resonance imaging (MRI) device, wherein each set of image raw data includes a plurality of data sampies being generated with a gradient-echo sequence, in particular a FLASH sequence, that spatially encodes an MRl signal received with the at least one radiofrequency receiver coil using a non-Cartesian k-space trajectory, each set of image raw data comprises a set of homogeneously distributed lines in k-space with equivalent spatial frequency content,; the lines of each set of image raw data cross the center of k-space and cover a continuous range of spatial frequencies, and the positions of the lines of each set of image raw data differ in successive sets of image raw data, and (b) subjecting the sets of image raw data to a regularized nonlinear inverse reconstruction process to provide the sequence of MR images, wherein each of the MR images is created by a simultaneous estimation of a sensitivity of the at least one receiver coil and the image content and in dependency on a difference between a current estimation of the sensitivity of the at least one receiver coil and the image content and a preceding estimation of the sensitivity of the at least one receiver coil and the image content.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV

Water and fat separation method based on under-sampling k-space data

The invention discloses a water and fat separation method based on under-sampling k-space data. The method includes steps of, step one, respectively acquiring k-space trajectory parameters and k-space raw data according to magnetic resonance (MR) raw data; step two, selecting a parameter system matrix according to the k-space trajectory parameters; step three, acquiring echo data of each channel according to the k-space raw data; step four, executing regularization iteration image reconstruction by using the parameter system matrix and the echo data of each channel; and step five, subjecting reconstructed images to variable projection (VARPRO) water and fat separation calculating to obtain a final image. The water and fat separation method based on the under-sampling k-space data is applicable to more scanning tracks, and by means of a VARPRO water and fat separation algorithm, a phase diagram, a B0 field image, a water image and a fat image which are irrelevant to main magnetic field inhomogeneity are separated; the water and fat separation method based on the under-sampling k-space data has advantages of VARPRO iteration field image calculating and is insensitive to seed points; and the water and fat separation method based on the under-sampling k-space data is smaller in calculated amount and fewer in calculating requirements, image merging is easier to finish, and a system function which is capable of achieving parallel imaging can be introduced.
Owner:SHENZHEN UNITED IMAGING HEALTHCARE CO LTD

Inside-out echo-planar imaging method for shortening echo time

The invention discloses an inside-out echo-planar imaging method for shortening echo time. The method is characterized in that: a k-space trajectory extends to the outer side of a phase encoding direction from the center, wherein a gradient for generating the trajectory is composed of reading-out gradients which switch between forward and reverse directions and phase encoding gradients which switch between forward and reverse directions and gradually increases from zero. The method further comprises a step that: in order to accommodate the phase encoding gradients of which the area increases gradually without adding an echo spacing, the phase encoding gradient and a data collecting window are permitted to be overlapped. According to the method disclosed by the invention, an effective echo time in a sequence is located in the center of a first echo, the echo time is shortened greatly, and the signal to noise ratio is increased; since the contrast ratio of an image depends on signals of a k-space centre, and data of the k-space center are from an initial echo, T2 or T2* weighing of the obtained image is very small; and in diffusion imaging and arterial spin labeling imaging, the decreasing of the T2 or the T2* weighing is beneficial to improving the quality of the image.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products