Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

687 results about "Micro-needle" patented technology

Microneedle devices and methods of manufacture

InactiveUS6908453B2Enhanced fluid movementImprove actionSurgical needlesMicroneedlesCapillary volumeSubstrate surface
Microneedle devices and methods of manufacturing the microneedle devices. The microneedle devices include microneedles protruding from a substrate, with the microneedles piercing a cover placed over the substrate surface from which the microneedles protrude. The cover and the microneedle substrate together define a capillary volume in fluid communication with the base of each microneedle. One manner of using microneedle arrays of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and / or extract blood or tissue. Manufacturing methods may include simultaneous application of pressure and ultrasonic energy when piercing the cover with the microneedles.
Owner:3M INNOVATIVE PROPERTIES CO

Microneedle drug delivery device

InactiveUS7226439B2Minimal and no damage and pain and irritationAdditive manufacturing apparatusSurgical needlesIrritationMicro-needle
Simple microneedle devices for delivery of drugs across or into biological tissue are provided, which permit drug delivery at clinically relevant rates across or into skin or other tissue barriers, with minimal or no damage, pain, or irritation to the tissue. The devices include a substrate to which a plurality of hollow microneedles are attached or integrated, and at least one reservoir, containing the drug, selectably in communication with the microneedles, wherein the volume or amount of drug to be delivered can be selectively altered. The reservoir can be formed of a deformable, preferably elastic, material. The device typically includes a means, such as a plunger, for compressing the reservoir to drive the drug from the reservoir through the microneedles. In one embodiment, the reservoir is a syringe or pump connected to the substrate.
Owner:VALERITAS LLC (US)

Method and device for intradermally delivering a substance

A device for delivering a substance into the skin of a patient includes a body and a skin penetrating device having at least one skin penetrating member, such as a microneedle. The body includes an internal cavity and a device for indicating the delivery of a sufficient amount of the substance to the patient and for producing a dispensing pressure to dispense and deliver the substance from the cavity. The indicating device is visible from the exterior of the delivery device. In some embodiments, the indicating device is an elastic expandable diaphragm which, when the cavity is filled with a substance, creates the dispensing pressure.
Owner:BECTON DICKINSON & CO

Smart disposable plastic lab-on-a-chip for point-of-care testing

InactiveUS20050130292A1None of measures has been particularly successfulRelieve painBioreactor/fermenter combinationsCombination devicesVenous bloodLab-on-a-chip
Disclosed herein is a fully-integrated, disposable biochip for point-of-care testing of clinically relevant parameters. Specifically, in accordance with an embodiment of the present invention, the biochip is designed for POCT (point-of-care-testing) of an array of metabolic parameters including partial pressure of oxygen, Glucose, and Lactate concentration from venous blood samples. The biochip is fabricated on a low-cost plastic substrate using mass manufacturing compatible fabrication processes. Furthermore, the biochip contains a fully-integrated metallic micro-needle for blood sampling. The biochip also uses smart passive microfluidics in conjunction with low-power functional on-chip pressure generators for microfluidic sequencing. The design, configuration, assembly and operation of the biochip are ideally suited for a disposable biochip specifically targeted towards POCT applications.
Owner:UNIVERSITY OF CINCINNATI

Intracutaneous microneedle array apparatus

InactiveUS6931277B1Facilitate biological fluid samplingIncrease transdermal flow rateElectrotherapyMicroneedlesStratum corneumEngineering
Improved microneedle arrays are provided having a sufficiently large separation distance between each of the individual microneedles to ensure penetration of the skin while having a sufficiently small separation distance to provide high transdermal transport rates. A very useful range of separation distances between microneedles is in the range of 100–300 microns, and more preferably in the range of 100–200 microns. The outer diameter and microneedle length is also very important, and in combination with the separation distance will be crucial as to whether or not the microneedles will actually penetrate the stratum corneum of skin. For circular microneedles, a useful outer diameter range is from 20–100 microns, and more preferably in the range of 20–50 microns. For circular microneedles that do not have sharp edges, a useful length for use with interstitial fluids is in the range of 50–200 microns, and more preferably in the range of 100–150 microns; for use with other biological fluids, a useful length is in the range of 200 microns–3 mm, and more preferably in the range of 200–400 microns. For circular microneedles having sharp side edges, a useful length for use with interstitial fluids is in the range of 50–200 microns, and more preferably in the range of 80–150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns–3 mm, and more preferably in the range of 200–400 microns. For solid microneedles having a star-shaped profile with sharp edges for its star-shaped blades, a useful length for use with interstitial fluids is in the range of 50–200 microns, and more preferably in the range of 80–150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns–3 mm, and more preferably in the range of 200–400 microns, while the radius of each of its blades is in the range of 10–50 microns, and more preferably in the range of 10–15 microns.
Owner:CORIUM INC

Drilling microneedle device

Rotating microneedles and microneedle arrays are disclosed that “drill” holes into a biological barrier, such as skin. The holes can of controlled depth and diameter and suitable for microsurgery, administering drugs and withdrawal of body fluids.
Owner:GEORGIA TECH RES CORP +1

Medical device for delivery of a biologically active material to a lumen

An apparatus for delivery of biologically active materials comprises a catheter and balloon having micro-needles or pores. In the apparatus, the balloon can have a polymer coating containing the biologically active material, and the apparatus can include a sheath surrounding the balloon. In one embodiment the biologically active material is delivered through lumens in the micro-needles. Another embodiment of the invention is an apparatus for delivery of biologically active materials comprising a catheter with a balloon disposed thereon and a shockwave generator for producing a shockwave for delivering the biologically active material to a body lumen. Methods for delivery of biologically active materials are also disclosed.
Owner:BOSTON SCI SCIMED INC

Applicators for microneedles

An applicator for a microprojection array is described. In one embodiment, the applicator comprises an energy-storing element. Application of force causes the compressed energy-storing element to extend or transition from first and second configurations, releasing stored energy to deploy a holding member in the application which is configured to hold an array of microprojections. In another embodiment, the applicator comprises an energy storing element with two stable configurations, a first stable configuration and second stable configuration. Application of force causes the energy-storing element to transition from the higher energy first stable configuration to the lower energy second stable configuration, releasing the difference in energies of the two states to deploy a holding member in the application which is configured to hold an array of microprojections.
Owner:CORIUM PHARMA SOLUTIONS INC

Microneedles, Microneedle Arrays, Methods for Making, and Transdermal and/or Intradermal Applications

InactiveUS20100121307A1Reduce and even eliminate painMinimize drug deliveryMicroneedlesSurgeryMulti materialProphylactic treatment
Embodiments are directed to microneedle array devices for intradermal and / or transdermal interaction with the body of patient to provide therapeutic, diagnostic or preventative treatment wherein portions of the devices may be formed by multi-layer, multi-material electrochemical fabrication methods and wherein individual microneedles may include valve elements or other elements for controlling interaction (e.g. fluid flow). In some embodiments needles are retractable and extendable from a surface of the device. In some embodiments, interaction occurs automatically with movement across the skin of the patient while in other embodiments interaction is controlled by an operator (e.g. doctor, nurse, technician, or patient).
Owner:MICROFAB

Microneedles and Methods for Microinfusion

Methods and devices are provided for delivering a drug to or withdrawing a fluid from a biological tissue, such the skin, sclera, cornea, and conjunctiva. One method includes the steps of inserting at least one microneedle into the biological tissue; partially retracting the at least one microneedle from the tissue; and then delivering at least one drug formulation into the biological tissue via the partially retracted at least one microneedle. The microneedle deforms and penetrates the biological tissue during the insertion step, and the retraction step at least partially relaxes the tissue deformation while maintaining at least part of the tissue penetration, facilitating drug delivery or fluid withdrawal.
Owner:GEORGIA TECH RES CORP

Electrokinetic system and method for delivering methotrexate

The electrokinetic methotrexate delivery system includes at least one applicator having a multiplicity of non-conductive micro-needles carried on a non-conductive surface of the applicator. The opposite surface is formed of electrically conductive material for contact with an active electrode. The applicator includes a matrix containing a medicament, e.g., methotrexate, or a carrier therefor between the opposite surfaces. When the applicator is applied to the individual's skin with the micro-needles penetrating the skin, an electrical current is completed through the power source, the active electrode, methotrexate, or electrically conductive carrier therefor, the targeted treatment site, the individual's body, a ground electrode and the power supply, thereby electokinetically driving the medicament through the non-conductive micro-needles into the targeted treatment site.
Owner:NITRIC BIOTHERAPEUTICS INC

Tissue Conforming Microneedle Array and Patch For Transdermal Drug Delivery or Biological Fluid Collection

Microneedle arrays are provided for use on a contoured or flexible tissue surface. In one embodiment, the microneedle array includes a plurality of microneedles, each having a base portion, a tip end portion distal to the base portion, and body portion therebetween; and a flexible substrate which comprises a plurality of apertures, each of which are defined by (i) a plurality of substrate elements which are integral with the base portions of the microneedles, and (ii) at least one spring element connecting at least two of the substrate elements. The spring element may include a curved element, such as a C-shaped, U-shaped, or S-shaped element. Apertures may be defined, for example, by two substrate elements, which connected to three or four spring elements. A skin patch is provided for therapeutic or diagnostic applications, which includes the microneedle array and an adhesive material.
Owner:YUZHAKOV VADIM V

Method and Apparatus for Micro-Needle Array Electrode Treatment of Tissue

The invention describes a system and method for revitalizing aging skin using electromagnetic energy that is delivered using a plurality of needles that are capable of penetrating the skin to desired depths. A particular aspect of the invention is the capability to spare zones of tissue from thermal exposure. This sparing of tissue allows new tissue to be regenerated while the heat treatment can shrink the collagen and tighten the underlying structures. Additionally, the system is capable of delivering therapeutically beneficial substances either through the penetrating needles or through channels that have been created by the penetration of the needles.
Owner:RELIANT TECH INC

Electrokinetic delivery system and methods therefor

The electrokinetic medicament delivery system includes at least one applicator having a multiplicity of non-conductive micro-needles carried on a non-conductive surface of the applicator. The opposite surface is formed of electrically conductive material for contact with an active electrode. The applicator includes a matrix containing a medicament or a carrier therefor between the opposite surfaces. When the applicator is applied to the individual's skin with the micro-needles penetrating the skin, an electrical current is completed through the power source, the active electrode, medicament, or electrically conductive carrier therefor, the targeted treatment site, the individual's body, a ground electrode and the power supply, thereby electokinetically driving the medicament through the non-conductive micro-needles into the targeted treatment site.
Owner:NITRIC BIOTHERAPEUTICS INC

Low-Profile Microneedle Array Applicator

An applicator (100) used to apply microneedle arrays (10) to a mammal. In particular, an application device for applying a microneedle device (120) to a skin surface comprising a flexible sheet (110) having a raised central area (115) attached to the microneedle device and a supporting member at or near the periphery of the flexible sheet, wherein the flexible sheet is configured such that it will undergo a stepwise motion in the direction orthogonal to the major plane of the sheet.
Owner:KINDEVA DRUG DELIVERY LP

Iontosonic-microneedle applicator apparatus and methods

InactiveUS20070276318A1Great and more efficaciousElectrotherapySurgerySide effectWhole body
Novel multichannel ionosonic devices with microneedle arrays incorporated into the devices for transdermal and intradermal delivery are described. In an embodiment, the ionosonic device includes a multichannel ionophoretic driver used in combination with a multichannel dispersion electrode integrated with ultrasonic elements and microneedle array elements mounted on a single application electrode. The ionosonic-microneedle transdermal device can be configured in a variety of shapes and structural flexibility for the treatment of skin and systemic disorders through the intradermal and transdermal delivery of one or more of a variety of therapeutic and modulating agents. Because of enhanced transdermal penetration this device offers the transdermal delivery of therapeutic peptides is getting closer to reality. The devices described herein deliver the therapeutic agents to the targeted diseased area as well as systemic levels obviating the need for oral ingestion, the associated side effects and as in the case of peptides bypasses the hydrolyzing digestive enzymes that make such agents ineffective when taken by mouth.
Owner:MIT

System and method for piercing dermal tissue

A system for piercing dermal tissue includes a skin-piercing element (e.g., an integrated micro-needle and biosensor medical device), at least one electrical contact (e.g., an electrical skin contact) and a meter configured for measuring an electrical characteristic (e.g., resistance and / or impedance) existent between the skin-piercing element and the electrical contact(s) when the system is in use. The electrical contact(s) can be integrated with a pressure / contact ring of the meter to provide a compact and inexpensive system compatible with integrated micro-needle and biosensor medical devices. Also, a method for piercing dermal tissue that includes contacting dermal tissue (e.g., skin) with at least one electrical contact and inserting a skin-piercing element into the dermal tissue while measuring an electrical characteristic existent between the skin-piercing element and the electrical contact(s).
Owner:LIFESCAN IP HLDG LLC

Embeddable micro-needle patch for transdermal drug delivery and method of manufacturing the same

An embeddable micro-needle patch for transdermal drug delivery and method of manufacturing the same are disclosed. The embeddable micro-needle patch for transdermal drug delivery comprises a supporting substrate, on which the surface includes a plurality of extruded supporting shafts; a biodegradable carrier, which is formed of biodegradable polymer material and disposed on the supporting shaft; and drugs, which are encapsulated in the biodegradable carrier. When the embeddable micro-needle patch for transdermal drug delivery is attached to the skin for a predetermined time, the biodegradable carrier is separated from the supporting shafts and embedded into the skin, and the biodegradable carrier may swell and then degrade, so as to release the drugs, which are encapsulated in the biodegradable carrier, at a rate of 1%˜99% loaded drug per day into the skin. Accordingly, velocity of releasing the drugs may be regulated, so as to sustain the drug efficacy.
Owner:NAT CHENG KUNG UNIV

Microneedle cartridge assembly and method of applying

InactiveUS20100256568A1Time-consume and difficult for operatorHave fragile and sanitary characteristicsMicroneedlesAdhesiveEngineering
A microneedle array cartridge includes a web of material having a top face and an opposite bottom face. An adhesive and a microneedle array are disposed on the bottom face of the web of material. A container is disposed relative to the bottom face of the web of material, and has a perimeter portion and a central portion for covering at least part of the microneedle array. At least part of the perimeter portion of the container contacts the adhesive, and the central portion of the container does not contact the adhesive. The perimeter portion and the central portion of the container are integrally formed.
Owner:3M INNOVATIVE PROPERTIES CO

Micro-current Iontophoretic Percutaneous Absorptive Patch

A self-contained, conveniently disposable percutaneous absorptive patch of the present invention utilizes, in a novel ways, the existing percutaneous absorptive principles to delivering topical medications quickly, painlessly, and effectively through the skin barrier. The absorptive principles include the epidermal microcuts / micro-needles, permeation enhancers, and micro-current iontophoresis. Most importantly, the transdermal absorptive patch of the present invention introduces a novel incorporation of self-producing micro-electrical currents and micro-electrodes into the existing conventional iontophoretic principle.
Owner:VOLT KEVIN

Microneedle electrode

In certain variations, methods, systems and / or devices for enhancing conductivity of an electrical signal through a subject's skin using one or more microneedle electrodes are provided. A microneedle electrode may be applied to the subject's skin by placing the microneedle electrode in direct contact with the subject's skin. The microneedles of the microneedle electrode may be inserted into the skin such that the microneedles pierce stratum corneum of the skin up to or through dermis of the skin. An electrical signal passes or is conducted through or across the microneedle electrode and the subject's skin, where impedance of the microneedle electrode is minimal and greatly reduced compared to existing technologies.
Owner:EMKINETICS

Intradermal delivery of biological agents

The present invention relates to methods for intradermally delivering one or more biologically active agents such as vaccines and therapeutic agents into the dermis layer of the skin of a subject to obtain systemic delivery or an immune response using a microneedle drug delivery device containing the agent to be delivered. The methods employ a microneedle device with a row of hollow microneedles. The microneedles penetrate the skin of the subject and assume an anchored state in which the microneedles are anchored in the skin and project laterally from the device. A pivotal motion is then performed with the device so that the skin in which the microneedles are engaged is lifted above the initial plane of the surface of the skin while the biologically active agent is delivered. The methods of the invention elicit increased humoral and / or cellular response as compared to conventional vaccine delivery routes, facilitating dose sparing.
Owner:NANOPASS TECH LTD

System and methods for optical sensing and drug delivery using microneedles

The current techniques provide a system for monitoring a physiological parameter of a patient using microneedles that are coupled to an optical system, allowing spectroscopic measurements to be made immediately below the outer layer of the epidermis. In embodiments of the present invention, the results of the spectroscopic measurements are used to control the administration of a drug through an intravenous tube. In other embodiments, the microneedles may be coated with a drug for administration to the patient. In other embodiments, the microneedles may be mounted in a probe, wherein an actuator is used to move the needles into contact with the skin, and a drug delivery system is used to infuse the drug into the patient. A method for making needles is also provided.
Owner:TYCO HEALTHCARE GRP LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products