Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

146 results about "Photosensitive Cell" patented technology

Intrinsically photosensitive retinal ganglion cells (ipRGCs), also called photosensitive retinal ganglion cells (pRGC), or melanopsin-containing retinal ganglion cells (mRGCs), are a type of neuron in the retina of the mammalian eye.

Solid-state image sensor having pixels shifted and complementary-color filter and signal processing method therefor

A solid-state image sensor capable of enhancing efficient use of incident light and increasing the resolution of an image and a signal processing method therefore are disclosed. A digital camera includes an image pickup section having a photosensitive array in which photosensitive cells or photodiodes are arranged. Signal charges, or pixel data, are read out of the photodiodes, two lines at a time, three lines at a time, or three lines at a time with line-by-line shift in accordance with a color filter using complementary colors. A signal processing section includes a data correcting circuit for correcting the pixel data. Pixel data of one of three primary colors R, G and B is interpolated in the position of each virtual photosensitive cell or that of each real photosensitive cell. The above color filer uses more efficiently incident light than a filter using the primary colors and improves the sensitivity of the photosensitive cells in a dense pixel arrangement, thereby contributing to the enhancement of image quality. Further, the generated pixel data are used to interpolate pixel data in the real photosensitive cells or the virtual photosensitive cells. This is successful to broaden the frequency band of the pixel data of the real photosensitive cells or those of the virtual photosensitive cells and therefore to improve image quality while obviating false colors.
Owner:FUJIFILM CORP

Solid-state image pickup apparatus adaptive to different display modes and having a high pixel density, synchronous video output capability and a method of signal processing

A solid-state image pickup apparatus includes a mode setting circuit for allowing the operator to select desired one of the modes matching with the display format of a display which displays a video signal fed thereto. A clock generating circuit generates clocks including a first clock and a second clock higher in frequency than the first clock. A frequency selector selects either one of the first and second clocks in accordance with a mode fed from the mode setting circuit. An image pickup section includes a plurality of photosensitive cells for transforming, by photoelectric transduction, light incident thereto from a scene to be picked up. The image pickup section picks up the scene and produces signal charges representative of the scene in accordance with the output of the frequency selector. A noise reducing circuit reduces noise components included in a signal output from the image pickup section. A digitizing circuit converts the output of the noise reducing circuit to a digital signal in accordance with the first clock. A signal processing circuit processes the output of the digitizing circuit in a manner matching with picture display and/or recording. A controller controls the clock generating circuit, frequency selector, image pickup section, noise reducing circuit, digitizing circuit, and signal processing circuit. The modes include a first mode in which the frequency selector outputs the first clock and a second mode in which it outputs the second clock.
Owner:FUJIFILM CORP

Tissue-engineered bone and preparation method thereof

The invention discloses a tissue-engineered bone. The tissue-engineered bone is multilayer cell sheet lamination compound with a three-dimensional capillary network, the multilayer cell sheet lamination compound consists of n laminated bone marrow mesenchymal stem cell sheets and vascular endothelial cells among all bone marrow mesenchymal stem cell sheet layers, and n is in a range of 3-8. A preparation method of the tissue-engineered bone comprises steps as follows: firstly, a photosensitive semiconductor structural layer is prepared on the surface of a cell culture dish, so that a photosensitive cell culture dish is obtained; then bone marrow mesenchymal stem cells are cultured with the photosensitive cell culture dish, and the bone marrow mesenchymal stem cell sheets are obtained; finally, the multilayer cell sheet lamination compound consisting of multiple layers of the bone marrow mesenchymal stem cell sheets and the vascular endothelial cells is constructed and cultured to obtain the tissue-engineered bone. The tissue-engineered bone purely consists of homologous cells, so that pollution caused by immunological rejection and stent degradation is reduced, and the tissue-engineered bone is significant in bone defect repair and early vascularization; the method is simple, easy to implement and convenient to popularize.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products