Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

48 results about "Protein expression profile" patented technology

Summary Protein expression profiling is defined in general as identifying the proteins expressed in a particular tissue, under a specified set of conditions and at a particular time, usually compared to expression in reference samples.

Protein expression profiling

Disclosed are compositions and methods for detecting small quantities of analytes such as proteins and peptides. The method involves associating a primer with an analyte and subsequently using the primer to mediate rolling circle replication of a circular DNA molecule. Amplification of the DNA circle is dependent on the presence of the primer. Thus, the disclosed method produces an amplified signal, via rolling circle amplification, from any analyte of interest. The amplified DNA remains associated with the analyte, via the primer, and so allows spatial detection of the analyte. The disclosed method can be used to detect and analyze proteins and peptides. Multiple proteins can be analyzed using microarrays to which the various proteins are immobilized. A rolling circle replication primer is then associated with the various proteins using a conjugate of the primer and a molecule that specifically binds the proteins to be detectable. Rolling circle replication from the primers results in production of a large amount of DNA at the sites in the array where the proteins are immobilized. The amplified DNA serves as a readily detectable signal for the proteins. The disclosed method can also be used to compare the proteins expressed in two or more different samples. The information generated is analogous to the type of information gathered in nucleic acid expression profiles. The disclosed method allows sensitive and accurate detection and quantitation of proteins expressed in any cell or tissue.
Owner:QIAGEN GMBH

Process for analyzing protein samples

Methods using gel electrophoresis and mass spectrometry for the rapid, quantitative analysis of proteins or protein function in mixtures of proteins derived from two or more samples in one unit operation are disclosed. In one embodiment the method includes (a) preparing an extract of proteins from each of at least two different samples; (b) providing a set of substantially chemically identical and differentially isotopically labeled protein reagents; (c) reacting the extract of proteins from different samples of step (a) with a different isotopically labeled reagent from the set of step (b) to provide two or more sets of isotopically differentially labeled proteins; (d) mixing each of the two or more sets of isotopically labeled proteins to form a single mixture of isotopically differentially labeled proteins; (e) electrophoresing the mixture of step (d) by an electrophoresing method capable of separating proteins within the mixture; (f) digesting at least a portion of one or more separated proteins of step (e) and (g) detecting the difference in the expression levels of the proteins in the two samples by mass spectrometry based on one or more peptides in the sample of labeled peptides. The analytical method can be used for qualitative and particularly for quantitative analysis of global protein expression profiles in cells and tissues, i.e. the quantitative analysis of proteomes.
Owner:DH TECH DEVMENT PTE +1

Rapid quantitative analysis of proteins or protein function in complex mixtures

InactiveUS7544518B2Facilitates quantitative determinationFacilitates quantitative determination of the absolute amountsComponent separationMaterial analysis by electric/magnetic meansIsotopic labelingProtein expression profile
Analytical reagents and mass spectrometry-based methods using these reagents for the rapid, and quantitative analysis of proteins or protein function in mixtures of proteins. The methods employ affinity labeled protein reactive reagents having three portions: an affinity label (A) covalently linked to a protein reactive group (PRG) through a linker group (L). The linker may be differentially isotopically labeled, e.g., by substitution of one or more atoms in the linker with a stable isotope thereof. These reagents allow for the selective isolation of peptide fragments or the products of reaction with a given protein (e.g., products of enzymatic reaction) from complex mixtures. The isolated peptide fragments or reaction products are characteristic of the presence of a protein or the presence of a protein function in those mixtures. Isolated peptides or reaction products are characterized by mass spectrometric (MS) techniques. The reagents also provide for differential isotopic labeling of the isolated peptides or reaction products which facilitates quantitative determination by mass spectrometry of the relative amounts of proteins in different samples. The methods of this invention can be used for qualitative and quantitative analysis of global protein expression profiles in cells and tissues, to screen for and identify proteins whose expression level in cells, tissue or biological fluids is affected by a stimulus or by a change in condition or state of the cell, tissue or organism from which the sample originated.
Owner:UNIV OF WASHINGTON

Rapid quantitative analysis of proteins or protein function in complex mixtures

InactiveUS20050233399A1Facilitates quantitative determinationFacilitates quantitative determination of the absolute amountsComponent separationMaterial analysis by electric/magnetic meansChemistryProtein expression profile
Analytical reagents and mass spectrometry-based methods using these reagents for the rapid, and quantitative analysis of proteins or protein function in mixtures of proteins. The methods employ affinity labeled protein reactive reagents having three portions: an affinity label (A) covalently linked to a protein reactive group (PRG) through a linker group (L). The linker may be differentially isotopically labeled, e.g., by substitution of one or more atoms in the linker with a stable isotope thereof. These reagents allow for the selective isolation of peptide fragments or the products of reaction with a given protein (e.g., products of enzymatic reaction) from complex mixtures. The isolated peptide fragments or reaction products are characteristic of the presence of a protein or the presence of a protein function in those mixtures. Isolated peptides or reaction products are characterized by mass spectrometric (MS) techniques. The reagents also provide for differential isotopic labeling of the isolated peptides or reaction products which facilitates quantitative determination by mass spectrometry of the relative amounts of proteins in different samples. The methods of this invention can be used for qualitative and quantitative analysis of global protein expression profiles in cells and tissues, to screen for and identify proteins whose expression level in cells, tissue or biological fluids is affected by a stimulus or by a change in condition or state of the cell, tissue or organism from which the sample originated.
Owner:UNIV OF WASHINGTON

Analytical Platform and Method for Generating Protein Expression Profiles of Cell Populations

The present invention is related to analytical platforms and methods performed therewith for generating qualitative and / or quantitative protein expression profiles, in particular differential protein expression profiles, of cell populations comprising: generating lysates of one or more populations of cells, the lysates comprising a plurality of proteins expressed by the respective cell populations, providing an essentially planar solid support, depositing at discrete sites small quantities of the cell lysates, in diluted or undiluted form directly on said solid support or on an adhesion-promoting layer applied on said solid support, thereby creating one or more one- or two-dimensional arrays of discrete measurement areas on said solid support, applying a number of binding reagents as specific binding partners for the proteins contained in cell lysates in discrete measurement areas and to be detected and, if adequate, one or more detection reagents on said one or more arrays of measurement areas, the binding reagents and the detection reagents being applied sequentially or in a single addition-step, after binding of the detection reagents to the binding reagents, to the one or more arrays of discrete measurement areas for e.g. global analysis of signaling pathways or screening antibody sets / libraries against protein targets for best specificity, selectivity and affinity, and measuring and recording optical signals emanating from said one or more arrays of discrete measurement areas in a locally resolved manner, wherein said essentially planar solid support is non-porous and an optionally applied adhesion-promoting layer has a thickness of less than 1 μm.
Owner:BAYER TECH SERVICES GMBH

Individualized cancer therapy

In certain embodiments, the invention provides methods for treating cancer, comprising: (a) obtaining a specimen of cancer tissue and normal tissue from a patient; (b) extracting total protein and RNA from the cancer tissue and normal tissue; (c) obtaining a protein expression profile of the cancer tissue and normal tissue; (d) identifying over-expressed proteins in the cancer tissue; (e) comparing the protein expression profile to a gene expression profile; (f) identifying at least one prioritized protein target by assessing connectivity of each said over-expressed protein to other cancer-related or stimulatory proteins; (g) designing a first RNA interference expression cassette to modulate the expression of at least one gene encoding the prioritized target protein; (h): designing a first RNA interference expression cassette to modulate the expression of at least one gene encoding a protein of higher priority in the signaling pathway in which the first protein is a component; (i) incorporating the first cassette into a first delivery vehicle; (j) providing a patient with an effective amount of the first delivery vehicle; (k) extracting total protein and RNA from the treated cancer tissue; (l) identifying over-expressed proteins in the treated cancer tissue; (m) designing a second RNA interference expression cassette to modulate the expression of a second prioritized protein in the treated tissue; (n) incorporating the second cassette into a second delivery vehicle; (o) providing the previously treated patient with an effective amount of the second delivery vehicle; (p) identifying a novel protein signal following prior treatment with protein specific knockdown; (q) identifying a gene mutation provided by gene sequencing / microarray on assessment of other protein signals; and (r) identifying of a novel protein signal as a result of determination of the gene mutation and assessment of other protein signals to, directly or indirectly, modify the expression (i.e., production) of such proteins.
Owner:GRADALIS

Individualized cancer therapy

In certain embodiments, the invention provides methods for treating cancer, comprising: (a) obtaining a specimen of cancer tissue and normal tissue from a patient; (b) extracting total protein and RNA from the cancer tissue and normal tissue; (c) obtaining a protein expression profile of the cancer tissue and normal tissue; (d) identifying over-expressed proteins in the cancer tissue; (e) comparing the protein expression profile to a gene expression profile; (f) identifying at least one prioritized protein target by assessing connectivity of each said over-expressed protein to other cancer-related or stimulatory proteins; (g) designing a first RNA interference expression cassette to modulate the expression of at least one gene encoding the prioritized target protein; (h): designing a first RNA interference expression cassette to modulate the expression of at least one gene encoding a protein of higher priority in the signaling pathway in which the first protein is a component; (i) incorporating the first cassette into a first delivery vehicle; (j) providing a patient with an effective amount of the first delivery vehicle; (k) extracting total protein and RNA from the treated cancer tissue; (l) identifying over-expressed proteins in the treated cancer tissue; (m) designing a second RNA interference expression cassette to modulate the expression of a second prioritized protein in the treated tissue; (n) incorporating the second cassette into a second delivery vehicle; (o) providing the previously treated patient with an effective amount of the second delivery vehicle; (p) identifying a novel protein signal following prior treatment with protein specific knockdown; (q) identifying a gene mutation provided by gene sequencing / microarray on assessment of other protein signals; and (r) identifying of a novel protein signal as a result of determination of the gene mutation and assessment of other protein signals to, directly or indirectly, modify the expression (i.e., production) of such proteins.
Owner:GRADALIS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products