Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

37 results about "Affinity label" patented technology

Affinity labels are a class of enzyme inhibitors that covalently bind to their target causing its inactivation. The hallmark of an affinity label is the use a targeting moiety to specifically and reversibly deliver a weakly reactive group to the enzyme that irreversibly binds to an amino acid residue. The targeting portion of the label often resembles the enzyme's natural substrate so that a similar mode of noncovalent binding is used prior to the covalent linkage. Their usefulness in medicine can be limited by the specificity of the first noncovalent binding step whereas indiscriminate action can be utilized for purposes such as affinity labeling - a technique for the validation of substrate-specific binding of compounds.

Rapid quantitative analysis of proteins or protein function in complex mixtures

InactiveUS7544518B2Facilitates quantitative determinationFacilitates quantitative determination of the absolute amountsComponent separationMaterial analysis by electric/magnetic meansIsotopic labelingProtein expression profile
Analytical reagents and mass spectrometry-based methods using these reagents for the rapid, and quantitative analysis of proteins or protein function in mixtures of proteins. The methods employ affinity labeled protein reactive reagents having three portions: an affinity label (A) covalently linked to a protein reactive group (PRG) through a linker group (L). The linker may be differentially isotopically labeled, e.g., by substitution of one or more atoms in the linker with a stable isotope thereof. These reagents allow for the selective isolation of peptide fragments or the products of reaction with a given protein (e.g., products of enzymatic reaction) from complex mixtures. The isolated peptide fragments or reaction products are characteristic of the presence of a protein or the presence of a protein function in those mixtures. Isolated peptides or reaction products are characterized by mass spectrometric (MS) techniques. The reagents also provide for differential isotopic labeling of the isolated peptides or reaction products which facilitates quantitative determination by mass spectrometry of the relative amounts of proteins in different samples. The methods of this invention can be used for qualitative and quantitative analysis of global protein expression profiles in cells and tissues, to screen for and identify proteins whose expression level in cells, tissue or biological fluids is affected by a stimulus or by a change in condition or state of the cell, tissue or organism from which the sample originated.
Owner:UNIV OF WASHINGTON

Selective labeling and isolation of phosphopeptides and applications to proteome analysis

A method for selective labeling of phosphate groups in natural and synthetic oligomers and polymers in the presence of chemically related groups such as carboxylic acid groups. The method is specifically applicable to biological oligomers and polymers, including phosphopeptides, phosphoproteins and phospholipids. In a specific embodiment, selective labeling of phosphate groups in proteins and peptides, for example, facilitates separation, isolation and detection of phosphoproteins and phosphopeptides in complex mixtures of proteins. Selective labeling can be employed to selectively introduce phosphate labels at phosphate groups in an oligomer or polymer, e.g., in a peptide or protein. Detection of the presence of the label, is used to detect the presence of the phosphate group in the oligomer or polymer. The method is useful for the detection of phosphoproteins or phosphopeptides. The phosphate label can be a colorimetric label, a radiolabel, a fluorescent or phosphorescent label, an affinity label or a linker group carrying a reactive group (or latent reactive group) that allows selective attachment of the oligomer or polymer (protein or peptide) to a phosphate label, to an affinity label or to a solid support. The method can be combined with well-known methods of mass spectrometry to detect and identify phosphopeptides and phosphoproteins.
Owner:UNIV OF WASHINGTON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products