Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

188 results about "Early breast cancer" patented technology

Early-stage breast cancer nondestructive screening and imaging system

The invention discloses an early-stage breast cancer nondestructive screening and imaging system, which mainly comprises circular gears, an annular ultrasonic array, a bowl-shaped annular shell, ultrasonic coupling liquid, a protective film, a horn antenna, a waveguide tube, a microwave generator, a frequency divider, a data acquisition circuit, a preprocessing circuit, a stepping motor, a driver, a digital I/O card, a computer and a display. The working process of the system is that: detected mammary glands are radiated by pulse microwaves to generate thermo-acoustic signals which are received by the annular ultrasonic array and are finally acquired by the computer; the driver drives the annular ultrasonic array to rotate to a next position around detected biological tissues; and the steps of acquisition and rotation are repeated until the thermo-acoustic signals of enough positions are received, and the computer re-establishes three-dimensional thermo-acoustic images of the detectedtissues. The early-stage breast cancer nondestructive screening and imaging system can quickly and nondestructively realize the three-dimensional thermo-acoustic imaging of the detected mammary glands to provide one of important bases for the diagnosis of early-stage breast cancer.
Owner:JIANGXI SCI & TECH NORMAL UNIV

Molecular markers predicting response to adjuvant therapy, or disease progression, in breast cancer

Predicting response to adjuvant therapy or predicting disease progression in breast cancer is realized by (1) first obtaining a breast cancer test sample from a subject; (2) second obtaining clinicopathological data from said breast cancer test sample; (3) analyzing the obtained breast cancer test sample for presence or amount of (a) one or more molecular markers of hormone receptor status, one or more growth factor receptor markers, (b) one or more tumor suppression / apoptosis molecular markers; and (c) one or more additional molecular markers both proteomic and non-proteomic that are indicative of breast cancer disease processes; and then (4) correlating (a) the presence or amount of said molecular markers and, with (b) clinicopathological data from said tissue sample other than the molecular markers of breast cancer disease processes. A kit of (1) a panel of antibodies; (2) one or more gene amplification assays; (3) first reagents to assist said antibodies with binding to tumor samples; (4) second reagents to assist in determining gene amplification; permits, when applied to a breast cancer patient's tumor tissue sample, (A) permits observation, and determination, of a numerical level of expression of each individual antibody, and gene amplification; whereupon (B) a computer algorithm, residing on a computer can calculate a prediction of treatment outcome for a specific treatment for breast cancer, or future risk of breast cancer progression.
Owner:LINKE STEVEN +2

Method for the early detection of breast cancer, lung cancer, pancreatic cancer and colon polyps, growths and cancers as well as other gastrointestinal disease conditions and the preoperative and postoperative monitoring of transplanted organs from the donor and in the recipient and their associated conditions related and unrelated to the organ transplantation

A method for the early diagnosis of breast, lung, pancreatic and colon growths and cancers as well as conditions associated with donor and recipient organ transplants, both before and after transplantation to identify and allow treatment of possible transplanted organ rejection and other disease conditions related and unrelated to the transplantation, compares the gene expression patterns from a patient's peripheral blood monocytes-lymphocyte's gene system with either the similar gene expression patterns of a normal person, or with the similar gene expression patterns of a person known to have the condition being screened for. Differences between the patient's gene expression patterns for particular genes and the normal patterns indicates the presence of the condition with the number of differences indicating the probability of the condition. Similarities between the patient's gene expression patterns for those particular genes and the patterns of a person known to have the condition indicates the presence of the condition with the number of similarities indicating the probability of the condition. For example, particular genes for use in identifying pancreatic cancer are disclosed.
Owner:BAUER A ROBERT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products