Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

181 results about "Resonator filter" patented technology

Electro-acoustic device with a variable acoustic wave velocity piezoelectric substrate

There is described an electro-acoustic device, comprising a piezo-electric substrate and a first transducer and second transducer supported by the substrate and each including a pair of interdigital transducer electrode arrays, the electrodes of the arrays being interleaved with each other. The first and second transducer are disposed opposing each other in a propagation direction of acoustic waves excited by the first and second transducers. The first transducer has a first electric signal associated with and existing across, and the second transducer has a second electrical signal associated with it which has a different phase from the first electrical signal. The first and second transducers are spaced apart such that substantially in-phase acoustic waves propagating in the substrate and incident on the first transducer in-phase with the first electric signal and on the second transducer in-phase with the second electrical signal. Preferably, the first and second transducers are spaced apart by an integer number of half acoustic wavelengths corresponding to an operating frequency of the device. This permits differential or balanced driving of the device. There is further disclosed examples of such a device utilised in transversely and in-line coupled resonator filters to provide balanced or differential inputs or outputs thereto, and to facilitate cascade connected coupled resonator filters having no ground loops.
Owner:NOKIA TECHNOLOGLES OY

Narrow band-pass tuned resonator filter topologies having high selectivity, low insertion loss and improved out-of-band rejection over extended frequency ranges

A tuned resonator circuit topology is disclosed that permits implementation of narrow band-pass filters having high loaded Q and optimal coupling (for low insertion loss) using a parallel tuned resonator topology at frequencies in the 1 to 2 GHz range and beyond. The topology consists of a mirror image of the parallel tuned circuit about the signal line of a conventional parallel tuned circuit to effect a cancellation of virtually all of the induced currents between the inductive elements of the resonators. This reduction in induced currents reduces the magnetic coupling between the resonators, thereby offsetting the increase in overall coupling between the resonators as frequency increases, and thereby serves to maintain optimal coupling between the resonators as the frequency of operation increases. Moreover, the mirror image topology increases the parallelism between the inductive elements in the resonators, thereby decreasing the inductance values and permitting an increase in capacitance values. Increasing the capacitance values of the resonators effectively offsets the decrease in the loaded Q as frequency is increased. The topology works for any number of parallel resonators. As the resolution of the manufacturing process decreases (e.g. from printed circuit board to integrated circuit processes), the range of operating frequencies scales with the increase in resolution.
Owner:ARRIS ENTERPRISES LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products