Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

220 results about "Ultra wideband communication systems" patented technology

Ultrawide-band communication system and method

An impulse radio communications system using one or more subcarriers to communicate information from an impulse radio transmitter to an impulse radio receiver. The impulse radio communication system is an ultrawide-band time domain system. The use of subcarriers provides impulse radio transmissions added channelization, smoothing and fidelity. Subcarriers of different frequencies or waveforms can be used to add channelization of impulse radio signals. Thus, an impulse radio link can communicate many independent channels simultaneously by employing different subcarriers for each channel. The impulse radio uses modulated subcarrier(s) for time positioning a periodic timing signal or a coded timing signal. Alternatively, the coded timing signal can be summed or mixed with the modulated subcarrier(s) and the resultant signal is used to time modulate the periodic timing signal. Direct digital modulation of data is another form of subcarrier modulation for impulse radio signals. Direct digital modulation can be used alone to time modulate the periodic timing signal or the direct digitally modulated the periodic timing signal can be further modulated with one or more modulated subcarrier signals. Linearization of a time modulator permits the impulse radio transmitter and receiver to generate time delays having the necessary accuracy for impulse radio communications.
Owner:TDC ACQUISITION HLDG

Pulse UWB (Ultra Wide Band) communication system based on CS (Compressed Sensing) theory

InactiveCN102104396AOvercoming the problem of high implementation complexitySolve the sparse problemTransmitter/receiver shaping networksPrecodingLow-pass filter
The invention discloses a pulse UWB (Ultra Wide Band) communication system based on a CS (Compressed Sensing) theory. A digital signal (X) transmitted by a transmitting terminal is effectively observed by introducing signal detection in the CS theory through a sparse algorithm in a digital signal processor, combining a random precoding module added at the transmitting terminal and matching with apulse generating module, a UWB channel and a low-speed sampler, and a common recovery reconfiguration algorithm in the CS theory is utilized to recover and reconstruct the digital signal (X) and realize communication. In the communication system provided by the invention, a plurality of parallel correlators and low-speed samplers needed in a first parallel scheme are not needed at a receiving terminal so that the problem of high hardware implementation complexity in the parallel scheme is solved; meanwhile, the low-speed sampler is directly used at the receiving terminal for sampling, and an analogue information converter is not used, so that the influence of the causality of a low-pass filter in the analogue information converter on observation is avoided and the problem of sparse observation matrix caused by the causality in a serial scheme is solved.
Owner:SHENZHEN GRADUATE SCHOOL TSINGHUA UNIV

Ultra-wideband communication method based on time-frequency conversion and slippage correlation

The invention discloses an ultra-wideband communication method based on Dechirp and slippage correlation, comprising the following steps of: at a transmitting terminal of an ultra-wideband communication system, inserting a pilot sequence in sent data firstly; then, performing base-band modulation and linear frequency modulation and spread spectrum; outputting an ultra-wideband transmission signalat the linear frequency modulation and spread spectrum of an available radio frequency band; at a receiving terminal of the ultra-wideband communication system, firstly by using a slippage correlation method, completing synchronization of a received signal through adjusting the time delay of an ultra-wideband reference signal of the linear frequency modulation and spread spectrum; then, mixing the ultra-wideband reference signal of the linear frequency modulation and spread spectrum with the received signal, namely, performing Dechirp process; and finally, after filtering in low pass, demodulating the base band of the received signal. According to the ultra-wideband communication method, the sampling rate and the signal processing scale of the receiving terminal can be reduced; the synchronization precision requirements are not high; the complexity is very low; and the method is especially applicable for ultra-wideband expand distance low-speed communication with high spread spectrum gain.
Owner:THE PLA INFORMATION ENG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products