Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5723results about "Building components" patented technology

Semiconductor device and method of manufacturing semiconductor device

The present invention provides a semiconductor device that is inexpensive and can suppress signal transmission delay, and a manufacturing method thereof. The semiconductor device includes: a plurality of semiconductor chips; a semiconductor substrate that has, on the same surface thereof, a chip-to-chip interconnection for electrically connecting the plurality of semiconductor chips to each other, and a plurality of chip-connection pads connected to the chip-to-chip interconnection; and a wiring board that has a plurality of lands of which pitch is larger than a pitch of the chip-connection pads, wherein a major surface of each of the plurality of semiconductor chips is connected to the chip-connection pads via a first connector so that the plurality of semiconductor chips are mounted on the semiconductor substrate, and an external-connection pad is formed on the major surface other than a region facing the semiconductor substrate, and is connected to the land on the wiring board via a second connector.
Owner:SONY CORP

Methods and systems for manufacturing a structure having organized areas

A beaded preform includes a plurality of adjacently positioned beads for forming a plurality of voids in an engineered material. The beaded preforms may be comprised of a filaments (single strand of beads) and mats (two-dimensional and three dimensional arrays of beads). The filaments and mats may be coated to become tows and laminates, respectively, which may then be assembled into composite materials. The preforms may be produced using novel manufacturing apparatuses and methods, and incorporated into known manufacturing processes to produce porous structures, including stress-steering structures, in any material including metals, plastics, ceramics, textiles, papers, and biological materials, for example. Permanent bead material is preferably made of polyacrylonitrile, carbon fiber, or graphite.
Owner:HEX

Fiber reinforced composite cores and panels

A fiber reinforced core panel is formed from strips of plastics foam helically wound with layers of rovings to form webs which may extend in a wave pattern or may intersect transverse webs. Hollow tubes may replace foam strips. Axial rovings cooperate with overlying helically wound rovings to form a beam or a column. Wound roving patterns may vary along strips for structural efficiency. Wound strips may alternate with spaced strips and spacers between the strips enhance web buckling strength. Continuously wound rovings between spaced strips permit folding to form panels with reinforced edges. Continuously wound strips are helically wrapped to form annular structures, and composite panels may combine both thermoset and thermoplastic resins.
Owner:METYX USA INC

Thermoplastic planks and methods for making the same

A thermoplastic laminate plank is described wherein the thermoplastic laminate plank comprises a core, a print layer, and optionally an overlay. The core comprises at least one thermoplastic material and has a top surface and bottom surface wherein a print layer is affixed to the top surface of the core and an overlay layer is affixed to the top surface of the print layer. Optionally, an underlay layer can be located and affixed between the bottom surface of the print layer and the top surface of the core. In addition, a method of making the thermoplastic laminate plank is further described which involves extruding at least one thermoplastic material into the shape of the core and affixing a laminate on the core, wherein the laminate comprises an overlay affixed to the top surface of the print layer and optionally an underlay layer affixed to the bottom surface of the print layer.
Owner:VÄLINGE INNOVATION AB

Fiber reinforced composite cores and panels

A fiber reinforced core panel is formed from strips of plastics foam helically wound with layers of rovings to form webs which may extend in a wave pattern or may intersect transverse webs. Hollow tubes may replace foam strips. Axial rovings cooperate with overlying helically wound rovings to form a beam or a column. Wound roving patterns may vary along strips for structural efficiency. Wound strips may alternate with spaced strips and spacers between the strips enhance web buckling strength. Continuously wound rovings between spaced strips permit folding to form panels with reinforced edges. Continuously wound strips are helically wrapped to form annular structures, and composite panels may combine both thermoset and thermoplastic resins.
Owner:METYX USA INC

Building panel with a mechanical locking system

Building panels 1, 1′ provided with a mechanical locking system including a tongue 30, at an edge of a first panel 1, cooperating with a tongue groove 20, at an edge of an adjacent second panel 1′, for vertical locking of the building panels. The edge of the first panel is provided with a displacement groove 60, which is downwardly open, and includes an inner wall 61, an outer wall 62, and an upper wall 67. The tongue 30 is formed out of the edge of the first panel. A resilient and displaceable and part 66 of the tongue 30 is displaceable into the displacement groove 60.
Owner:VÄLINGE INNOVATION AB

Thermoplastic planks and methods for making the same

A thermoplastic laminate plank is described wherein the thermoplastic laminate plank comprises a core, a print layer, and optionally an overlay. The core comprises at least one thermoplastic material and has a top surface and bottom surface wherein a print layer is affixed to the top surface of the core and an overlay layer is affixed to the top surface of the print layer. Optionally, an underlay layer can be located and affixed between the bottom surface of the print layer and the top surface of the core. In addition, a method of making the thermoplastic laminate plank is further described which involves extruding at least one thermoplastic material into the shape of the core and affixing a laminate on the core, wherein the laminate comprises an overlay affixed to the top surface of the print layer and optionally an underlay layer affixed to the bottom surface of the print layer.
Owner:VÄLINGE INNOVATION AB

Multi-channel raceway

InactiveUS6972367B2Resistant to tamperingResistant to accidental openingSubstation/switching arrangement detailsBuilding componentsLow voltageEngineering
A modular raceway system for any combination of high voltage power lines and low voltage data communication lines uses a combination hinge-latch cover member and a single piece base member. The system incorporates an elliptical profile and eliminates conventional sidewalls, and presents the hinge-latch mechanism to releasably secure a cover member in a snap-lock manner to the base member.
Owner:HELLERMANNTYTON CORP

Building panel with a mechanical locking system

Building panels 1, 1′ provided with a mechanical locking system including a tongue 30, at an edge of a first panel 1, cooperating with a tongue groove 20, at an edge of an adjacent second panel 1′, for vertical locking of the building panels. The edge of the first panel is provided with a displacement groove 60, which is downwardly open, and includes an inner wall 61, an outer wall 62, and an upper wall 67. The tongue 30 is formed out of the edge of the first panel. A resilient and displaceable and part 66 of the tongue 30 is displaceable into the displacement groove 60.
Owner:VÄLINGE INNOVATION AB

Fiber-reinforced composite materials structures and methods of making same

Reinforcement preforms and methods for making same for use in fiber-reinforced composite materials structures are disclosed, in which the reinforcement preforms comprise first and second reinforcement preform elements which include strength reinforcement fibers that are in desired directional orientation. The first element has a cross-fiber surface which extends transverse of its constituent strength reinforcement fibers and is in contacting juxtaposition to a selected surface region of the second element, forming an abutment therebetween. Abutment strength reinforcing fibers, which may optionally be introduced in situ by a continuum of fibers, such as a yarn or thread, extend through at least a portion of said second element and its said selected surface region, the abutment, said cross-fiber edge surface, and into the first element substantially in the direction of orientation to its constituent strength fibers to which its cross-fiber surface is transverse.
Owner:ALBANY ENGINEERED COMPOSITES

Multi-use electric tile modules

A multiuse electric tile module for walling, flooring, or roofing applications having a photovoltaic cell, thermovoltaic cell, electroluminescent material, or a combination of these disposed over a rigid substrate, such as ceramic. Each tile is electrically connectable through a male-to-female connecter to at least one adjacent tile without external wiring. Preferably, a sealing layer is disposed over the electrical elements and rigid substrate to seal and protect each tile. Optionally, each tile may further include an inverter to convert direct current to alternating current or a battery to store electricity. The electroluminescent material provides light for architectural accents or nighttime visibility.
Owner:BANISTER MARK P

Mechanical locking of floor panels with vertical folding

ActiveUS20140069043A1Easy to installCounteract and prevent separationBuilding componentsThin material handlingAerospace engineering
Floor panels (1, 1′, 1″) are shown, which are provided with a mechanical locking system on long and short edges (5a, 5b, 4a, 4b) allowing installation with vertical folding and where the long edge (5a, 5b) locking system prevents separation of the short edges (4a, 4b) during the folding action.
Owner:VÄLINGE INNOVATION AB

Method for producing titanium alloy turbine blades and titanium alloy turbine blades

InactiveUS6127044ALess abrasionSuperior in water droplet erosion resistancePropellersEngine manufactureLeading edgeTurbine blade
PCT No. PCT / JP95 / 01817 Sec. 371 Date Jun. 2, 1998 Sec. 102(e) Date Jun. 2, 1998 PCT Filed Sep. 13, 1995 PCT Pub. No. WO97 / 10066 PCT Pub. Date Mar. 20, 1997A method for producing titanium alloy turbine blades comprising the steps of (a) forming turbine blades of titanium alloy through hot forging or machining, (b) cooling leading edges on tip portions of the turbine blades including covers thereof formed through hot forging or machining faster than blade main body after final hot forging or solid solution treatment, and (c) heat treating the cooled turbine blades. With this method, it is possible to manufacture titanium turbine blades in an economical fashion and obtain titanium alloy turbine blades superior in reliability by preventing erosion.
Owner:KK TOSHIBA +1

Prepreg fabric and honeycomb sandwich panel

A woven fabric prepreg comprising at least [A] a woven fabric as reinforcing fibers, [B] a thermosetting resin or thermosetting resin composition and [C] fine particles of a resin and having a cover factor of 95% or more, and a honeycomb sandwich panel, comprising skin panels fabricated by said woven fabric prepreg and [D] a honeycomb core can be obtained. The woven fabric prepreg little changes in tackiness with the lapse of time and has moderate drapability, being excellent in self adhesiveness to the honeycomb core when used as skin panels of a honeycomb sandwich panel. Furthermore, the honeycomb sandwich panel obtained has a small porosity in the skin panels fabricated by the cured prepreg and has excellent surface smoothness with few pits and depressions on the surfaces of the skin panels.
Owner:TORAY IND INC

Structural insulated panel construction for building structures

A structural insulated laminated construction panel for building structures is described. The panel comprises a rigid core material layer of expanded polymeric material having opposed flat parallel surfaces. An outer skin is adhesively secured to one of the flat surfaces and an inner skin is adhesively secured to the other of the flat surfaces. The core material layer has a density of about 2 lbs / cubic foot. The core material is preferably an expanded polystyrene material. A building structure is constructed from such panels used as exterior and interior wall panels, floor panels and roof panels.
Owner:HUGHES JOHN +3

Thermoplastic Planks and Methods For Making The Same

A thermoplastic laminate plank is described wherein the thermoplastic laminate plank comprises a core, a print layer, and optionally an overlay. The core comprises at least one thermoplastic material and has a top surface and bottom surface wherein a print layer is affixed to the top surface of the core and an overlay layer is affixed to the top surface of the print layer. Optionally, an underlay layer can be located and affixed between the bottom surface of the print layer and the top surface of the core. In addition, a method of making the thermoplastic laminate plank is further described which involves extruding at least one thermoplastic material into the shape of the core and affixing a laminate on the core, wherein the laminate comprises an overlay affixed to the top surface of the print layer and optionally an underlay layer affixed to the bottom surface of the print layer.
Owner:VÄLINGE INNOVATION AB

Thermoplastic planks and methods for making the same

A thermoplastic laminate plank is described wherein the thermoplastic laminate plank comprises a core, a print layer, and optionally an overlay. The core comprises at least one thermoplastic material and has a top surface and bottom surface wherein a print layer is affixed to the top surface of the core and an overlay layer is affixed to the top surface of the print layer. Optionally, an underlay layer can be located and affixed between the bottom surface of the print layer and the top surface of the core. In addition, a method of making the thermoplastic laminate plank is further described which involves extruding at least one thermoplastic material into the shape of the core and affixing a laminate on the core, wherein the laminate comprises an overlay affixed to the top surface of the print layer and optionally an underlay layer affixed to the bottom surface of the print layer.
Owner:VÄLINGE INNOVATION AB

Floor panel and methods for manufacturing floor panels

In a method for manufacturing floor panels that have at least a substrate and a top layer provided on the substrate, the top layer including a thermoplastic layer that is translucent or transparent, the method may involve providing the top layer, including the thermoplastic layer, on the substrate. The method may also involve heating at least the thermoplastic layer, and structuring the thermoplastic layer using a mechanical press element.
Owner:FLOORING IND LTD

Building panel with a mechanical locking system

A set of essentially identical panels (1, 1′), such as building panels, provided with a mechanical locking system including a displaceable tongue (30), which is arranged in a displacement groove with a first opening at a first edge of a first panel (1). The displaceable tongue is configured to cooperate with a first tongue groove (20), with a second opening at a second edge of an adjacent second panel (1′), for vertical locking of the first and the second edge. The height of the first opening is greater than a second height of the second opening.
Owner:VÄLINGE INNOVATION AB

Apparatus for premounting of locking elements to a panel

The apparatus mounts a locking element into a groove in an edge of a panel. An advance device feeds a stream of locking elements to a pressing device which mounts the locking elements into the groove on the edge of the panel. The locking elements are fed from a line of locking elements stored on a reel. A separating device cuts the line of locking elements into individual locking elements. The separating device is positioned either upstream of the advancing device or immediately upstream of the pressing device. When the separating device is immediately upstream of the pressing device, a spring is used to flex the stream during the short stoppage when the separating device separates individual locking elements from the line of locking elements.
Owner:AKZENTA PANEELE PROFILE GMBH

Preform for manufacturing a material having a plurality of voids and method of making the same

A beaded preform includes a plurality of adjacently positioned beads for forming a plurality of voids in an engineered material. The beaded preforms may be comprised of a filaments (single strand of beads) and mats (two-dimensional and three dimensional arrays of beads). The filaments and mats may be coated to become tows and laminates, respectively, which may then be assembled into composite materials. The preforms may be produced using novel manufacturing apparatuses and methods, and incorporated into known manufacturing processes to produce porous structures, including stress-steering structures, in any material including metals, plastics, ceramics, textiles, papers, and biological materials, for example.
Owner:OWENS CHARLES R

Fire assembly for recessed electrical fixtures

A fire assembly that can be used for installing recessed electrical fixtures into various structures such as wall assemblies is provided. The fire assembly includes an electrical fixture contained within a generally fire-resistant housing. The housing can enclose the electrical fixture in such a manner that the resulting fire assembly has an integral structure. In some instances, a support structure can be utilized to attach the housing to the electrical fixture. Furthermore, the housing can be a cube-shaped box have a variety of generally fire-resistant walls. These walls can be made from materials such as sheet rock.
Owner:HUBBELL INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products