Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3051 results about "Thick plate" patented technology

Technological process for producing super-thick plate

The invention relates to a process for producing an ultra-thick plate and belongs to the field of rolling and producing an ultra-thick steel plate in the metallurgical industry. The invention mainly overcome the defect of producing the ultra-thick steel plate by a traditional model casting manufacturing blank and an electro-slag remelting manufacturing blank. The method comprises the following steps: cutting and fixing lengths of the blanks, mechanically conditioning the blanks (eliminating, leveling and cleaning a single-surface oxide layer of a casting blank with a milling machine, a planer or a shot blast); clamping an assembly (relatively superposing the cleaning surfaces of the two blanks after processing, placing the two blanks oppositely and clamping the blanks); mounting the blanks in a vacuum chamber of an electronic beam welding machine for purpose of vacuuming; sewing the assembly on the electronic beam welding seal edge, heating the assembly in a furnace and rolling the assembly through temperature control; and then producing the ultra-thick steel plate. Compared with the traditional electro-slag remelting production process, the process has the advantages of high production efficiency, reduced electric power consumption, less investment of production devices and low production cost. Compared with the traditional die casting production process, the process solves the problem of segregation and looseness of a large-scale die casting ingot center part; the finished product ratio is high; and the finished product ratio of blank assembly is over 90 %.
Owner:SHANDONG IRON & STEEL CO LTD

Scanning type laser vision sensing-based narrow-gap deep-groove automatic laser multilayer welding method for thick plate

The invention discloses a scanning type laser vision sensing-based narrow-gap deep-groove automatic laser multilayer welding method for a thick plate, relates to a welding method, and aims to solve the problems that the conventional structured light vision sensing-based welding method can only be used for a simple shallow-groove laser weld seam tracking task and that when the conventional structured light vision sensing-based welding method is used for the narrow-gap deep-groove weld seam welding of the thick plate, a covering phenomenon is easily produced, the groove identification accuracy is lower, only real-time weld seam alignment calibration can be realized and narrow-gap deep-groove laser multilayer welding bead planning and welding cannot be realized. The method specifically comprises the following steps of: 1, selecting a groove form; 2, scanning a groove section image of a thick plate workpiece to be welded by using an image scanning unit; 3, processing the acquired groove section image by using an image algorithm to obtain weld seam image data; 4, performing fitting calculation; and 5, finishing the welding of welding beads layer by layer. The method is used for the deep-groove weld seam welding of the thick plate.
Owner:HARBIN INST OF TECH

Method for producing super-thick steel plate

The invention discloses a method for producing a super-thick steel plate. The method comprises the following production process steps of: performing pretreatment on molten iron; making steel by using a convertor; performing external refining; continuously casting; heating; rolling; cooling in an accelerated way; normalizing; controlling a cold condition; finishing; inspecting performance; and performing ultrasonic flaw detection. In the method, a low-C high-Mn component system is utilized, and Ni and Cu alloy elements are added into the steel in combination with micro-alloying treatment of Nb, V and Ti. The steel comprises the following chemical components in percentage by weight: less than or equal to 0.12 percent of C, 0.20 to 0.40 percent of Si, 1.20 to 1.50 percent of Mn, less than orequal to 0.008 percent of P, less than or equal to 0.003 percent of S, 0.03 to 0.06 percent of AlT, less than or equal to 0.10 percent of Nb, Ti and V, less than or equal to 0.80 percent of Cu and Ni, less than or equal to 0.40 percent of Ceq and the balance of Fe and inevitable impurities. By the method, a continuous casting blank is used for producing high-performance Q345R steel plates with the thickness of 60 to 100mm, so that production cost is reduced, and the requirement of manufacturing containers with high parameter pressure is met; the low-C high-Mn component system is used for a component design, so that the requirement that the material Ceq is less than or equal to 0.40 percent is met; and the continuous casting blank is used for producing a high-performance Q345R super-thick plate, so that the method has a simple process, the process is easy to realize, and the plate can be produced by a common wide and thick plate factory.
Owner:HUNAN VALIN XIANGTAN IRON & STEEL CO LTD

High-toughness aluminum lithium alloy and preparation method thereof

ActiveCN102021457AReduce anisotropyChemical strengthening effect is goodImpurityHeat treated
The invention discloses a high-toughness aluminum lithium alloy and a preparation method thereof. The alloy comprises the following chemical components in percentage by weight: 3.2 to 4.2 percent of Cu, 0.7 to 1.8 percent of Li, 0.20 to 0.60 percent of Mn, 0.20 to 0.60 percent of Zn, 0.06 to 0.20 percent of Zr, 0.20 to 0.80 percent of Mg, 0.2 to 0.7 percent of Ag, less than or equal to 0.10 percent of Si, less than or equal to 0.10 percent of Fe, less than or equal to 0.12 percent of Ti, less than or equal to 0.15 percent of other impurities (single impurity is less than or equal to 0.05 percent) and the balance of Al. One or five of alloy elements Mn, Zn, Mg, Ag and Zr can be selectively added. Proportioning is performed according to the alloy components, the raw materials are melted, then furnace refining and standing are performed, and alloy ingots with required specifications are cast. The alloy ingots are preferably homogenized and then molded by any process of hot extruding, hot rolling and the like, and the alloy ingots thermally treated by the preferable process can be used for processing parts. The high-toughness aluminum lithium alloy material has uniform microscopic structure and stable performance, and is suitable for manufacturing thick plates and extruded materials. The ultimate tensile strength can reach over 510MPa, and meanwhile, the elongation rate is more than 8 percent and the KIc can reach over 30MPam1/2. The material product can be used for structural elements of the fields of aerospace, nuclear industry, traffic and transportation, sports goods, weapons and the like.
Owner:AVIC BEIJING INST OF AERONAUTICAL MATERIALS

X80 level large-deformation resistance pipe line steel medium and heavy plate production method

The invention relates to a method for producing an X80 grade large deformation resistant pipeline steel medium plate. The economic component design with low carbon is adopted to perform controlling and rolling stages on ingot, namely rolling the grain refined zone and the non grain refined zone. The method comprises: firstly, air cooling and relaxing after finished rolling is performed so that the temperature of a steel plate before entering water and cooled is reduced below the phase change point Ar3 between 30 and 50 DEG C, and 50 to 70 percent of austenite in the relaxing process is converted into proeutectoid ferrite; and secondly, laminar flow cooling is performed on the steel plate within the range of the cooling speed between 20 and 35 DEG C per second, the finished cooling temperature is controlled within the range of between 250 and 400 DEG C; and in the water cooling process, the remaining austenite is converted into bainite structure, and proeutectoid ferrite + bainite double-phase structure is obtained. The intensity and the plasticity index of the finished product satisfy the following requirements: the yield strength Rt0.5 is 530 to 630MPa, the intensity of tension Rm is 625 to 825 MPa, the yield ratio Rt0.5/Rm is less than or equal to 0.80, and the homogeneous deformation tensile stretch UEL is more than or equal to 10 percent.
Owner:UNIV OF SCI & TECH BEIJING

Bridge structural steel and production method thereof

The invention discloses bridge structure steel and a production method thereof. The production method comprises: pretreating molten iron; smelting in a top and bottom combined blown converter; refining in a ladle furnace (LF); performing Ruhrstahl Heraeus (RH) refining; continuously casting plate blanks; rolling wide and thick plates; and performing normalizing heat treatment. The produced bridge structural steel comprises the following chemical components in percentage by weight: 0.11 to 0.16 percent of C, 0.10 to 0.45 percent of Si, 1.35 to 1.70 percent of Mn, less than or equal to 0.010 percent of S, less than or equal to 0.020 percent of P, 0.025 to 0.060 percent of Nb, 0.008 to 0.030 percent of Ti, 0.025 to 0.080 percent of V, 0.10 to 0.50 percent of Ni, 0.015 to 0.060 percent of Als, less than or equal to 40*10<-6> of N, less than or equal to 40*10<-6> of O, less than or equal to 2*10<-6> of H and the balance of iron and inevitable impurities, wherein Als represents Alsol. The lower yield strength of the steel plates produced by the method is not less than 370MPa, the tensile strength of the steel plates is not less than 510MPa, the yield to strength ratio of the steel plates is not more than 0.75, the percentage elongation after fracture of the steel plates is not less than 30 percent, the longitudinal AKv of the steel plates at -40 DEG C is not less than 240J, and the steel plates meet the requirements for manufacturing high-speed multi-track railway bridges and can be promoted to be used in engineering structures such as building, transport and ocean platforms.
Owner:LAIWU STEEL YINSHAN SECTION CO LTD

High-strength high-toughness aluminum alloy pre-tensioned thick plate and preparation method thereof

A high-strength high-toughness aluminum alloy pre-tensioned thick plate and a preparation method thereof relate to an aluminum alloy pre-tensioned thick plate and a preparation method thereof and aim at solving problems that due to a poorly soluble compound which is formed by Fe, Si and other elements in 7A04 aluminum alloy or due to a eutectic compound generated during casting, aluminum alloy structural materials have bad toughness and low strength so that long-time safe and reliable work in bad working environment cannot be realized. The thick plate consists of the following components according to percentage by weight: 1.40-2.00% of Cu, 1.80-2.80% of Mg, 0.20-0.60% of Mn, 0.10-0.25% of Cr, 5.00-6.50% of Zn, 0-0.10% of Si, 0.05-0.25% of Fe, 0-0.05% of Ti, 0-0.10% of Ni, 0.01-0.05% of single impurity, 0.01-0.10% of aggregate impurity and the balance of Al. The preparation method is as follows: fusing and casting a flat aluminum alloy cast ingot; and carrying out homogenizing annealing, hot rolling, quenching pre-tensioning and single and double aging treatment. The higher stress corrosion resistance capability, the anti-fatigue strength and the fracture toughness property of the aluminum alloy pre-tensioned thick plate prepared according to the method are obviously improved so as to satisfy the requirement of the long-time safe and reliable work in bad working environment.
Owner:NORTHEAST LIGHT ALLOY CO LTD

Hardening and tempering high-strength steel plate for wood based panel equipment and production method of tempering high-strength steel plate

InactiveCN102181794AFine tissue structureGood welding performanceImpurityDecarburization
The invention relates to a hardening and tempering high-strength steel plate for wood based panel equipment and a production method of the steel plate, and belongs to the field of manufacturing low-alloy high-strength structural steel. The steel plate consists of the following chemical components in percentage by weight: 0.18 to 0.24 percent of C, 0.20 to 0.50 percent of Si, 0.80 to 1.20 percent of Mn, more than or equal to 0.02 percent of P, more than or equal to 0.01 percent of S, 0.20 to 0.50 percent of Mo, 0.20 to 0.50 percent of Ni, 0.70 to 1.00 percent of Cr, more than or equal to 0.003percent of B, 0.017 to 0.030 percent of Nb, 0.040 to 0.050 percent of V, 0.017 to 0.026 percent of Ti, and the balance of Fe and inevitable impurities. The production method of the steel plate comprises the following steps of: electric furnace smelting, vacuum decarburization /vacuum arc decarburization (VD/VOD) furnace vacuum decarburization, ladle furnace (LF) furnace refining, continuous casting (die casting), billet steel (ingot) clearing, heating, plate rolling, hardening and tempering, steel plate checking and polishing, tempering, sampling inspection, and warehousing. The hardening andtempering high-strength steel plate for the wood based panel equipment adopts Cr-Ni-Mo-B system micro-alloy elements for composite strengthening, and acquires good obdurability matching through a reasonable heat treatment process, and simultaneously the welding performance of a thick plate is not reduced.
Owner:WUYANG IRON & STEEL +1

A non-modulated production process of plastic mold steel thick plate

ActiveCN102268599AEliminate quenching and temperingReduce manufacturing costSheet steelThick plate
The invention discloses a production technology of a non-modulated plastic die steel thick plate. The production technology comprises the following steps: converter smelting and ladle furnace (LF) and Ruhrstahl Heraeus (RH) refining are adopted to pour a continuous cast billet; the heating temperature is 1150-1200 DEG C, the precision rolling temperature is 900-950 DEG C, the finish rolling temperature is 860-900 DEG C; the cooling control of the steel plate is performed after the steel plate is rolled, the phase transformation strengthening and the precipitation strengthening of the microalloyed carbon nitride are utilized to ensure that when the section of the steel plate is not modulated, the structure and performance are uniform along the section, the plastic die steel of which section hardness is 300-340 is obtained; the rolled steel plate is tempered to eliminate the stress and avoid sawing crack, the hardness of the steel plate is uniform after tempering, and the section has granular bainite structure. In the production technology, the alloy component is controlled, Ni is not added, a small amount of Mo, B and V are added and the Cr content is increased properly, thus the steel plate has higher hardenability; and the cooling control of the rolled steel plate is performed to ensure that the large-section steel plate has bainite structure. The production technology is suitable for the production of the non-modulated plastic die steel thick plate, which is prepared from the 320mm continuous cast billet and of which thickness is less than 120mm.
Owner:NANJING IRON & STEEL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products