Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

31results about How to "Less crosstalk" patented technology

Digital-to-analogue converter circuits

This invention is generally concerned with digital-to-analogue converters and more particularly relates to techniques for reducing signal dependent loading of reference voltage sources used by these converters.A differential switched capacitor digital-to-analogue (DAC) circuit (500) comprises first and second differential signal circuit portions (500a,b) for providing respective positive and negative signal outputs with respect to a reference level, and has first and second reference voltage inputs (112,114) for receiving respective positive and negative references. Each of said first and second circuit portions comprises an amplifier (102a,b) with a feedback capacitor (104a,b), a second capacitor (106a,b), and a switch (108a,b, 110a,b) to switchably couple said second capacitor to a selected one of said reference voltage inputs to charge the second capacitor and to said feedback capacitor to share charge with the feedback capacitor. The switch of said first circuit portion is further configured to connect said second capacitor (106a) of said first circuit portion to share charge with said feedback capacitor (104b) of said second circuit portion; and the switch of said second circuit portion is further configured to connect said second capacitor (106b) of said second circuit portion to share charge with said feedback capacitor (104a) of said first circuit portion. This enables the second capacitors to in effect be alternately pre-charged to positive and negative signal-dependent nodes so that, on average, signal dependent loading of the references is approximately constant.
Owner:CIRRUS LOGIC INC

Multi-fiber core single-mode optical fiber and manufacturing method thereof

The invention relates to a multi-fiber core single-mode optical fiber and a manufacturing method thereof. The multi-fiber core single-mode optical fiber comprises claddings and a plurality of fiber cores. The multi-fiber core single-mode optical fiber is characterized in that the fiber cores include a pumping fiber core and a plurality of signal fiber cores, wherein the pumping fiber core is arranged in the center of the optical fiber, the signal fiber cores are distributed on one to three circumferences around the center at equal intervals, so as to form one to three layers of signal fiber cores, sunken claddings tightly cover each signal fiber core, and common claddings are arranged outside the sunken claddings. The multi-fiber core single-mode optical fiber has the characteristics of low signal crosstalk among all of the signal fiber cores, easiness in online light amplification, simplicity and convenience in manufacturing and low manufacturing cost and is suitable for large-scale production. A distributed Raman amplification technique of the multi-fiber core single-mode optical fiber is used in an ultrahigh-speed communication system, so that effective light amplification can be realized, and the harm of a non-linear effect to the performance of a high-speed optical transmission system is further reduced.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD

Digital-to-analogue converter circuits

This invention is generally concerned with digital-to-analogue converters and more particularly relates to techniques for reducing signal dependent loading of reference voltage sources used by these converters.
A differential switched capacitor digital-to-analogue (DAC) circuit (500) comprises first and second differential signal circuit portions (500a,b) for providing respective positive and negative signal outputs with respect to a reference level, and has first and second reference voltage inputs (112,114) for receiving respective positive and negative references. Each of said first and second circuit portions comprises an amplifier (102a,b) with a feedback capacitor (104a,b), a second capacitor (106a,b), and a switch (108a,b, 110a,b) to switchably couple said second capacitor to a selected one of said reference voltage inputs to charge the second capacitor and to said feedback capacitor to share charge with the feedback capacitor. The switch of said first circuit portion is further configured to connect said second capacitor (106a) of said first circuit portion to share charge with said feedback capacitor (104b) of said second circuit portion; and the switch of said second circuit portion is further configured to connect said second capacitor (106b) of said second circuit portion to share charge with said feedback capacitor (104a) of said first circuit portion. This enables the second capacitors to in effect be alternately pre-charged to positive and negative signal-dependent nodes so that, on average, signal dependent loading of the references is approximately constant.
Owner:CIRRUS LOGIC INC

A kind of multi-core single-mode optical fiber and its manufacturing method

The invention relates to a multi-fiber core single-mode optical fiber and a manufacturing method thereof. The multi-fiber core single-mode optical fiber comprises claddings and a plurality of fiber cores. The multi-fiber core single-mode optical fiber is characterized in that the fiber cores include a pumping fiber core and a plurality of signal fiber cores, wherein the pumping fiber core is arranged in the center of the optical fiber, the signal fiber cores are distributed on one to three circumferences around the center at equal intervals, so as to form one to three layers of signal fiber cores, sunken claddings tightly cover each signal fiber core, and common claddings are arranged outside the sunken claddings. The multi-fiber core single-mode optical fiber has the characteristics of low signal crosstalk among all of the signal fiber cores, easiness in online light amplification, simplicity and convenience in manufacturing and low manufacturing cost and is suitable for large-scale production. A distributed Raman amplification technique of the multi-fiber core single-mode optical fiber is used in an ultrahigh-speed communication system, so that effective light amplification can be realized, and the harm of a non-linear effect to the performance of a high-speed optical transmission system is further reduced.
Owner:YANGTZE OPTICAL FIBRE & CABLE CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products