Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

826 results about "Anti virals" patented technology

Probiotic, lactic acid-producing bacteria and uses thereof

InactiveUS20060099197A1Good curative effectMitigating deleterious side-effectsAntibacterial agentsBiocideMicrobial agentAnti fungal
The present invention discloses compositions and methodologies for the utilization of probiotic organisms in therapeutic compositions. More specifically, the present invention relates to the utilization of one or more species or strains of lactic acid-producing bacteria, preferably strains of Bacillus coagulans, for the control of gastrointestinal tract pathogens, including antibiotic-resistant gastrointestinal tract pathogens, and their associated diseases by both a reduction in the rate of colonization and the severity of the deleterious physiological effects of the colonization of the antibiotic-resistant pathogen. In addition, the present invention relates to the utilization of therapeutic compounds comprised of lactic acid—producing bacteria and anti-microbial agents such as antibiotics, anti-fungal compounds, anti-yeast compounds, or anti-viral compounds. The present invention also discloses methodologies for: (i) the selective breeding and isolation of probiotic, lactic acid-producing bacterial strains which possess resistance or markedly decreased sensitivity to anti-microbial agents (e.g., antibiotics, anti-fungal agents, anti-yeast agents, and anti-viral agents); and (ii) treating or preventing bacteria-mediated infections of the gastrointestinal tract by use of the aforementioned probiotic bacterial strains with or without the concomitant administration of antibiotics. While the primary focus is on the treatment of gastrointestinal tract infections, the therapeutic compositions of the present invention may also be administered to buccal, vaginal, optic, and like physiological locations.
Owner:GANEDEN BIOTECH

Anti-viral nucleoside analogs and methods for treating viral infections, especially HIV infections

The present invention relates to novel compounds according to the to the general formulas I, II, III, IV or V: wherein B is nucleoside base according to the structure: R is H, F, Cl, Br, I, C1-C4 alkyl (preferably CH3), -C=N, -C=C-Ra, X is H, C1-C4 alkyl (preferably, CH3), F, Cl, Br or I; Z is O or CH2, with the proviso that Z is CH2 and not O when the compound is according to general formula II, R<3 >is -C=C-H and R<2 >is H or a phosphate, diphosphate, triphosphate or phosphotriester group; R<1 >is H, an acyl group, a C1-C20 alkyl or an ether group; R<2 >is H, an acyl group, a C1-C20 alkyl or ether group, a phosphate, diphosphate, triphosphate, phosphodiester group or a group; Nu is a radical of a biologically active antiviral compound such that an amino group or hydroxyl group from said biologically active antiviral compound forms a phosphate, phosphoramidate, carbonate or urethane group with the adjacent moiety; R<8 >is H, or a C1-C20 alkyl or ether group, preferably a C1-C12 alkyl group; k is 0-12, preferably, 0-2; R<3 >is selected from a C1-C4 alkyl (preferably, CH3), -(CH2)n-C=C-Ra, R<3a >and R<3b >are independently selected from H, F, Cl, Br or I; R<4 >and R<5 >are independently selected from H, F, Cl, Br, I, OH, C1-C4 alkyl (preferably, CH3), -(CH2)n-C=C-Ra, with the proviso that R<4 >and R<5 >are not both H; Ra is H, F, Cl, Br, I, or -C1-C4 alkyl, preferably H or CH3; Y is H, F, Cl, Br, I or -C1-C4 alkyl, preferably H or CH3; and n is 0, 1, 2, 3, 4 or 5, preferably 0, 1 or 2; and their anomers, pharmaceutically acceptable salts, solvates, or polymorphs thereof.
Owner:YALE UNIV

Probiotic, lactic acid-producing bacteria and uses thereof

InactiveUS7708988B2Good curative effectMitigating deleterious side-effectsAntibacterial agentsBiocideDiseaseMicrobial agent
The present invention discloses compositions and methodologies for the utilization of probiotic organisms in therapeutic compositions. More specifically, the present invention relates to the utilization of one or more species or strains of lactic acid-producing bacteria, preferably strains of Bacillus coagulans, for the control of gastrointestinal tract pathogens, including antibiotic-resistant gastrointestinal tract pathogens, and their associated diseases by both a reduction in the rate of colonization and the severity of the deleterious physiological effects of the colonization of the antibiotic-resistant pathogen. In addition, the present invention relates to the utilization of therapeutic compounds comprised of lactic acid-producing bacteria and anti-microbial agents such as antibiotics, anti-fungal compounds, anti-yeast compounds, or anti-viral compounds. The present invention also discloses methodologies for: (i) the selective breeding and isolation of probiotic, lactic acid-producing bacterial strains which possess resistance or markedly decreased sensitivity to anti-microbial agents (e.g., antibiotics, anti-fungal agents, anti-yeast agents, and anti-viral agents); and (ii) treating or preventing bacteria-mediated infections of the gastrointestinal tract by use of the aforementioned probiotic bacterial strains with or without the concomitant administration of antibiotics. While the primary focus is on the treatment of gastrointestinal tract infections, the therapeutic compositions of the present invention may also be administered to buccal, vaginal, optic, and like physiological locations.
Owner:GANEDEN BIOTECH

Methods for the inhibition of epstein-barr virus transmission employing anti-viral peptides capable of abrogating viral fusion and transmission

Fusion of the viral envelope, or infected cell membranes with uninfected cell membranes, is an essential step in the viral life cycle. Recent studies involving the human immunodeficiency virus type 1(HIV-1) demonstrated that synthetic peptides (designated DP-107 and DP-178) derived from potential helical regions of the transmembrane (TM) protein, gp41, were potent inhibitors of viral fusion and infection. A computerized antiviral searching technology (C.A.S.T.) that detects related structural motifs (e.g., ALLMOTI 5, 107x178x4, and PLZIP) in other viral proteins was employed to identify similar regions in the Epstein-Barr virus (EBV). Several conserved heptad repeat domains that are predicted to form coiled-coil structures with antiviral activity were identified in the EBV genome. Synthetic peptides of 16 to 39 amino acids derived from these regions were prepared and their antiviral activities assessed in a suitable in vitro screening assay. These peptides proved to be potent inhibitors of EBV fusion. Based upon their structural and functional equivalence to the known HIV-1 inhibitors DP-107 and DP-178, these peptides should provide a novel approach to the development of targeted therapies for the treatment of EBV infections.
Owner:TRIMERIS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products