Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

51 results about "Ground penetration radar" patented technology

Double-sideband suppressed-carrier radar to null near-field reflections from a first interface between media layers

A ground-penetrating radar comprises a software-definable transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a constant or variable different amount double-sideband suppressed carrier modulation such as 10 MHz, 20 MHz, and 30 MHz Processing suppresses the larger first interface reflection and emphasizes the smaller second, third, etc. reflections. Processing determines the electrical parameter of the natural medium adjacent to the antenna.
The modulation process may be the variable or constant frequency difference between pairs of frequencies. If a variable frequency is used in modulation, pairs of tunable resonant microstrip patch antennas (resonant microstrip patch antenna) can be used in the antenna design. If a constant frequency difference is used in the software-defined transceiver, a wide-bandwidth antenna design is used featuring a swept or stepped-frequency continuous-wave (SFCW) radar design.
The received modulation signal has a phase range that starts at 0-degrees at the transmitter antenna, which is near the first interface surface. After coherent demodulation, the first reflection is suppressed. The pair of antennas may increase suppression. Then the modulation signal phase is changed by 90-degrees and the first interface signal is measured to determine the in situ electrical parameters of the natural medium.
Deep reflections at 90-degrees and 270-degrees create maximum reflection and will be illuminated with modulation signal peaks. Quadrature detection, mixing, and down-conversion result in 0-degree and 180-degree reflections effectively dropping out in demodulation.
Owner:STOLAR

Double-sideband suppressed-carrier radar to null near-field reflections from a first interface between media layers

A ground-penetrating radar comprises a software-definable transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a constant or variable different amount double-sideband suppressed carrier modulation such as 10 MHz, 20 MHz, and 30 MHz Processing suppresses the larger first interface reflection and emphasizes the smaller second, third, etc. reflections. Processing determines the electrical parameter of the natural medium adjacent to the antenna.The modulation process may be the variable or constant frequency difference between pairs of frequencies. If a variable frequency is used in modulation, pairs of tunable resonant microstrip patch antennas (resonant microstrip patch antenna) can be used in the antenna design. If a constant frequency difference is used in the software-defined transceiver, a wide-bandwidth antenna design is used featuring a swept or stepped-frequency continuous-wave (SFCW) radar design.The received modulation signal has a phase range that starts at 0-degrees at the transmitter antenna, which is near the first interface surface. After coherent demodulation, the first reflection is suppressed. The pair of antennas may increase suppression. Then the modulation signal phase is changed by 90-degrees and the first interface signal is measured to determine the in situ electrical parameters of the natural medium.Deep reflections at 90-degrees and 270-degrees create maximum reflection and will be illuminated with modulation signal peaks. Quadrature detection, mixing, and down-conversion result in 0-degree and 180-degree reflections effectively dropping out in demodulation.
Owner:STOLAR

Nondestructive test method for depth and horizontal position of hidden crack of road base

The invention discloses a nondestructive test method for the depth and horizontal position of a hidden crack of the road base. The method comprises that corresponding data images are obtained by continuous measurement via a ground penetration radar and manual spot measurement, the position of the crack is approximately determined, on the basis, the data images are analyzed in an ellipse method to improve the positioning precision, and the length and depth of the crack in the semi-rigid base are accurately positioned. Via continuous measurement based on the ground penetration radar and the manual spot measurement, the error of the obtained horizontal position of the crack of the semi-rigid base reaches 4.4%, and the error of the upper depth of the crack reaches 32%. After data analysis via the ellipse method, the error of the horizontal position of the crack of the semi-rigid base reaches 2.2%, and the error of the upper depth of the crack reaches 22%, wherein the precision of the horizontal position is improved by 2.2%, and the precision of the upper depth of the crack is improved by 10%. Thus, accurate data basis can be provided for crack maintenance, and the nondestructive test method of the invention has significant theoretical and practical values.
Owner:ZHENGZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products