Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

197 results about "Thoracic vertebrae" patented technology

In vertebrates, thoracic vertebrae compose the middle segment of the vertebral column, between the cervical vertebrae and the lumbar vertebrae. In humans, there are twelve thoracic vertebrae and they are intermediate in size between the cervical and lumbar vertebrae; they increase in size going towards the lumbar vertebrae, with the lower ones being a lot larger than the upper. They are distinguished by the presence of facets on the sides of the bodies for articulation with the heads of the ribs, as well as facets on the transverse processes of all, except the eleventh and twelfth, for articulation with the tubercles of the ribs. By convention, the human thoracic vertebrae are numbered T1–T12, with the first one (T1) located closest to the skull and the others going down the spine toward the lumbar region.

Devices and methods for minimally invasive treatment of degenerated spinal discs

InactiveUS20050222681A1Accurate spacingBone debris is eliminatedBone implantJoint implantsExpandable cageRadio frequency
Spinal stabilization devices and their methods of insertion and use to treat degenerated lumbar, thoracic or cervical spinal discs in minimally invasive, outpatient procedures are described. In one embodiment, the spinal stabilization device is an expandable cage made of a coil or perforated cylindrical tube with a bulbous or bullet-shaped distal end and a flat or rounded proximal end. In a preferred embodiment, the spinal stabilization device is mechanically expanded to a larger diameter or is made of a superelastic nickel-titanium alloy which is thermally programmed to expand to a relatively larger diameter when a pre-determined transition temperature below body temperature is reached. To treat a degenerated disc, a guide wire is inserted into the disc and an endoscope is inserted through a posterolateral puncture in the back and advanced up to the facet of the spine. Mechanical tools or laser energy, under endoscopic visualization, are used to remove or vaporize a portion of the facet bone, creating an opening into the foraminal space in the spine for insertion of an endoscope, which enables the disc, vertebra and nerves to be seen. The passageway is expanded, mechanical tools or laser of RF energy are used to make a tunnel into the disc, and a delivery cannula is inserted up to the opening of the tunnel. An insertion tool is used to insert one or more spinal stabilization devices into the tunnel in the disc, preserving the mobility of the spine, while maintaining the proper space between the vertebra. Laser or radio frequency (RF) energy is used to coagulate bleeding, vaporize or remove debris and shrink the annulus of the disc to close, at least partially, the tunnel made in the disc.
Owner:TRIMEDYNE

Spinous process stabilization device and method

A fixation device to immobilize a spinal motion segment and promote posterior fusion, used as stand-alone instrumentation or as an adjunct to an anterior approach. The device functions as a multi-level fusion system including modular single-level implementations. At a single-level the implant includes a pair of plates spanning two adjacent vertebrae with embedding teeth on the medially oriented surfaces directed into the spinous processes or laminae. The complementary plates at a single-level are connected via a cross-post with a hemi-spherical base and cylindrical shaft passed through the interspinous process gap and ratcheted into an expandable collar. The expandable collar's spherical profile contained within the opposing plate allows for the ratcheting mechanism to be correctly engaged creating a uni-directional lock securing the implant to the spine when a medially directed force is applied to both complementary plates using a specially designed compression tool. The freedom of rotational motion of both the cross-post and collar enables the complementary plates to be connected at a range of angles in the axial and coronal planes accommodating varying morphologies of the posterior elements in the cervical, thoracic and lumbar spine. To achieve multi-level fusion the single-level implementation can be connected in series using an interlocking mechanism fixed by a set-screw.
Owner:GINSBERG HOWARD JOESEPH +2

Spinal orthotic devices

InactiveUS7662121B2Property can be increased and decreasedFlexible adaptationOrthopedic corsetsSagittal planeMedicine
The invention relates to a spinal orthotic device configured from one or more elements of a modular system, comprising the following elements:
    • a lower abdominal corset (40, 120),
    • an upper abdominal corset (17, 130) that can be attached cranially to the lower abdominal corset (40, 120),
    • a corset supporting element (41) that can be secured posteriorly in the lower abdominal corset (40, 120) and is arranged along the lumbar spine, supporting the spine while restricting sagittal mobility,
    • a thoracic spinal corset (10, 200) that can be attached cranially to the lower abdominal corset (40, 120),
    • at least one curved supporting clasp (47) that can be inserted posteriorly optionally into a bandage of a lower abdominal corset (40, 120) and an upper abdominal corset (17, 130) or into an bandage of a lower abdominal corset (40, 120) and a thoracic spinal corset (10, 200), said curved supporting clasp being attached to a corset supporting element (41) for correction of lordosis and for restriction of sagittal and frontal mobility in the area of the lumbar spine,
    • at least one supporting element (23, 160) which can optionally be secured cranially in the thoracic spinal corset (10, 200) and caudally to the corset supporting element (41, 150) and extends laterally along the spine to align and relieve the spine in the sagittal plane,
    • and an abdominal truss pad (190) that can be attached ventrally to a lower abdominal corset (40, 120) for correction of lordosis of the lumbar spine and increasing the intra-abdominal pressure.
Owner:ZOURS CLAUDIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products