Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33results about How to "Effective and robust" patented technology

Method of guidance for placing a satellite on station

ActiveUS20160178750A1Effective and robust procedureFuel consumption is minimizedCosmonautic vehiclesCosmonautic partsState variableOptimal control
A method of guidance for placing a satellite on station comprises the following steps carried out during a predefined current cycle: A) determining on the ground a law of orientation of the thrust vector, and a history of state variables and of adjoint state variables of the satellite for the transfer from a starting orbit to a target orbit using optimal control theory, B) determining on the ground a law of evolution of the rotation of the satellite about the thrust vector, on the basis of the orientation law and of the history, C) representing according to a predetermined format the evolution of the state variables and adjoint state variables so as to obtain first parameters, D) representing according to a predetermined format a law of evolution of the rotation so as to obtain second parameters, E) concatenating the first and second parameters so as to obtain a guidance plan for the satellite, F) downloading onboard the guidance plan, G) periodically repeating according to a predefined period which is smaller than the duration of the guidance cycle: g1) reconstructing onboard the satellite a guidance instruction, g2) executing onboard the satellite the instruction by applying a closed control loop, H) measuring on the ground the real orbital trajectory of the satellite, I) repeating steps A) to H) with the trajectory measured at the end of the cycle as starting orbit of the following cycle, until the target orbit is attained.
Owner:THALES SA

Monitoring system of wind-induced motion or vibration in at least one overhead cable, in particular a conductor aerial cable of a transmission or distribution

The present invention relates to a monitoring system of wind-induced motion or vibration in at least one overhead cable (102), in particular a conductor aerial cable (102) of a transmission or distribution electric line. The monitoring system comprises: at least three sensor nodes (104) adapted to be installed in positions different from each other on a first overhead cable (102) and configured for detecting the motion or vibration through a synchronous signal acquisition. Each of the at least three sensor nodes (104) comprises a respective triaxial accelerometer sensor (301) configured for acquiring a first node signal and a first processor (302) configured for identifying, in the first node signal, a maximum node amplitude and an associated node frequency through a spectral analysis of the first node signal. The monitoring system further comprises a processing unit (105) operatively associable with the at least three sensor nodes (104) and comprising a second processor (401) configured for comparing to each other at least three maximum node amplitudes respectively of the at least three sensor nodes (104), for identifying a selected maximum amplitude and an associated selected frequency, the selected maximum amplitude being the maximum of the at least three maximum node amplitudes. The respective triaxial accelerometer sensor (301) in each of the at least three sensor nodes (104) is further configured for acquiring a second node signal. The first processor (302) is further configured for identifying, in the second node signal, a node selected amplitude and an associated node selected phase through a spectral analysis of the second node signal, the node selected amplitude and the node selected phase being associated with the selected frequency. The second processor (401) is further configured for calculating a numerical model based on at least three node selected amplitudes and associated at least three node selected phases, for all of the at least three sensor nodes (104), for reconstructing the motion or vibration in any point of the at least one overhead cable (102) according to the selected frequency. The present invention also relates to a related monitoring method and related sensor node.
Owner:SICAME SA

Monitoring system of wind-induced motion or vibration in at least one overhead cable, in particular a conductor aerial cable of a transmission or distribution

The present invention relates to a monitoring system of wind-induced motion or vibration in at least one overhead cable (102), in particular a conductor aerial cable (102) of a transmission or distribution electric line. The monitoring system comprises: at least three sensor nodes (104) adapted to be installed in positions different from each other on a first overhead cable (102) and configured for detecting the motion or vibration through a synchronous signal acquisition. Each of the at least three sensor nodes (104) comprises a respective triaxial accelerometer sensor (301) configured for acquiring a first node signal and a first processor (302) configured for identifying, in the first node signal, a maximum node amplitude and an associated node frequency through a spectral analysis of the first node signal. The monitoring system further comprises a processing unit (105) operatively associable with the at least three sensor nodes (104) and comprising a second processor (401) configured for comparing to each other at least three maximum node amplitudes respectively of the at least three sensor nodes (104), for identifying a selected maximum amplitude and an associated selected frequency, the selected maximum amplitude being the maximum of the at least three maximum node amplitudes. The respective triaxial accelerometer sensor (301) in each of the at least three sensor nodes (104) is further configured for acquiring a second node signal. The first processor (302) is further configured for identifying, in the second node signal, a node selected amplitude and an associated node selected phase through a spectral analysis of the second node signal, the node selected amplitude and the node selected phase being associated with the selected frequency. The second processor (401) is further configured for calculating a numerical model based on at least three node selected amplitudes and associated at least three node selected phases, for all of the at least three sensor nodes (104), for reconstructing the motion or vibration in any point of the at least one overhead cable (102) according to the selected frequency. The present invention also relates to a related monitoring method and related sensor node.
Owner:SICAME SA

Method of guidance for placing a satellite on station

A method of guidance for placing a satellite on station comprises the following steps carried out during a predefined current cycle: A) determining on the ground a law of orientation of the thrust vector, and a history of state variables and of adjoint state variables of the satellite for the transfer from a starting orbit to a target orbit using optimal control theory, B) determining on the ground a law of evolution of the rotation of the satellite about the thrust vector, on the basis of the orientation law and of the history, C) representing according to a predetermined format the evolution of the state variables and adjoint state variables so as to obtain first parameters, D) representing according to a predetermined format a law of evolution of the rotation so as to obtain second parameters, E) concatenating the first and second parameters so as to obtain a guidance plan for the satellite, F) downloading onboard the guidance plan, G) periodically repeating according to a predefined period which is smaller than the duration of the guidance cycle: g1) reconstructing onboard the satellite a guidance instruction, g2) executing onboard the satellite the instruction by applying a closed control loop, H) measuring on the ground the real orbital trajectory of the satellite, I) repeating steps A) to H) with the trajectory measured at the end of the cycle as starting orbit of the following cycle, until the target orbit is attained.
Owner:THALES SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products