Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

68results about How to "Minimal discomfort" patented technology

Analyte test device

An analyte test device is constructed as an integrated, single-use, disposable cartridge which can be releasably installed into a compatible analyte test monitor. In use, the device can be used in conjunction with the monitor to lance the skin of a patient to create a blood sample, express the blood sample from the wound site using vacuum forces and calculate the concentration of a particular analyte in the expressed blood sample. In one embodiment, the device includes a base which includes a top surface and a bottom surface. The base is also shaped to define an aperture which extends transversely through its top and bottom surfaces. An electrochemical test sensor is affixed to the base in such a manner so that a vacuum path is at least partially defined between the base and the test sensor, the vacuum path being in fluid communication with the aperture. A cover is affixed to the top surface of the base over the aperture, the cover comprising a flexible dome-shaped member and a lancet coupled to the member, the lancet being orientated such that its longitudinal axis extends at an approximate right angle relative to the longitudinal axis of the test sensor. The bottom surface of the base is shaped to include a skin receiving surface which at least partially defines the aperture in the base, the skin receiving surface having a steep inward contour to distend the skin of the patient when pressed thereagainst.
Owner:ABBOTT DIABETES CARE INC

Modular Systems for Monitoring the Presence of a Person Using a Variety of Sensing Devices

InactiveUS20100039269A1Minimal discomfortExtended sensor element service lifeDiagnostic recording/measuringSensorsElectrical connectionEngineering
A capacitive sensor element for use with a patient monitoring system and a method for manufacturing and dispensing such sensor elements for use. The sensor elements include a flat, flexible, substrate layer that is manufactured into a roll that also includes at least two longitudinal conductive elements printed or layered onto one side of the substrate layer material. Individual capacitive sensor elements comprising a section of the substrate material with corresponding sections of the conductive elements may be separated from the manufactured roll by tearing along perforations across the width of the substrate layer material. Once an individual capacitive sensor element has been separated from the roll for use, one end of the element is folded over to align pairs of connector apertures positioned through the conductive elements and the associated substrate layer. Dual snap electrical connectors are positioned over and through the apertures to provide the necessary electrical connections between the capacitive sensor and the instrumentation of the patient monitoring system. The present invention further includes a method of manufacturing the roll of capacitive sensor elements according to the structures described above and providing such rolled elements in a dispenser configuration for use in facilities utilizing the patient monitoring systems.
Disclosed is an integrated interconnect cable component for allowing the operation of dielectric shift sensor elements with a variety of control monitors associated with pressure switch based patient alarm systems. The interconnect cable component may be used for connecting a dielectric shift sensing mat (associated with a patient monitoring system) with any of a variety of different pressure switch based control unit module as utilized in conjunction with patient occupancy alarm systems. The interconnect component includes an integrated driver, sensor, comparator, calibration, logic circuit; a relay activation circuit; and a power supply (battery). The cabled component takes the dielectric shift measured across the contacts for a sensor mat and drives a relay activation circuit accordingly. The relay activation circuit in turn provides the on/off switch condition that the existing pressure switch monitor circuit expects to see at the connection cable.
Owner:NEWHAM PAUL

Analyte test device

An analyte test device is constructed as an integrated, single-use, disposable cartridge which can be releasably installed into a compatible analyte test monitor. In use, the device can be used in conjunction with the monitor to lance the skin of a patient to create a blood sample, express the blood sample from the wound site using vacuum forces and calculate the concentration of a particular analyte in the expressed blood sample. In one embodiment, the device includes a base which includes a top surface and a bottom surface. The base is also shaped to define an aperture which extends transversely through its top and bottom surfaces. An electrochemical test sensor is affixed to the base in such a manner so that a vacuum path is at least partially defined between the base and the test sensor, the vacuum path being in fluid communication with the aperture. A cover is affixed to the top surface of the base over the aperture, the cover comprising a flexible dome-shaped member and a lancet coupled to the member, the lancet being orientated such that its longitudinal axis extends at an approximate right angle relative to the longitudinal axis of the test sensor. The bottom surface of the base is shaped to include a skin receiving surface which at least partially defines the aperture in the base, the skin receiving surface having a steep inward contour to distend the skin of the patient when pressed thereagainst.
Owner:ABBOTT DIABETES CARE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products