Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

39 results about "Dna binding activity" patented technology

The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun.

Regulation of NAD(P)H oxidase growth and transcription in melanoma cells

Malignant melanoma cells spontaneously generate reactive oxygen species (ROS) that promote constitutive activation of the transcription factor nuclear factor-kB (NF-kB). Although antioxidants and inhibitors of NAD(P)H oxidases significantly reduce constitutive NF-kB activation and suppress cell proliferation, the nature of the enzyme responsible for ROS production in melanoma cells has not been determined. To address this issue, we now have characterized the source of ROS production in melanoma cells. ROS are generated by isolated, cytosol-free melanoma plasma membranes, with inhibition by NAD(P)H oxidase inhibitors. The p22phox, gp91phox and p67phox components of the human phagocyte NAD(P)H oxidase, and the 91phox homolog NOX4 were demon-strated in melanomas by RT-PCR and sequencing, and protein product for both p22phox and gp91phox were detected in cell membranes by immunoassay. Normal human epidermal melanocytes expressed only p22phox and NOX4. Melanoma proliferation was reduced by NAD(P)H oxidase inhibitors and by transfection of antisense but not sense oligonucleotides for p22phox and NOX4. Also, the flavoprotein inhibitor diphenylene iodonium inhibited constitutive DNA binding of nuclear protein to the NF-kB and cyclic-AMP response element consensus oligonucleotides, without affecting DNA binding activity to AP-1 or OCT-1.
Owner:THE UNIV OF UTAH

Regulation of NAD(p)h oxidase growth and transcription in melanoma cells

Malignant melanoma cells spontaneously generate reactive oxygen species (ROS) that promote constitutive activation of the transcription factor nuclear factor-kB (NF-kB). Although antioxidants and inhibitors of NAD(P)H oxidases significantly reduce constitutive NF-kB activation and suppress cell proliferation, the nature of the enzyme responsible for ROS production in melanoma cells has not been determined. To address this issue, we now have characterized the source of ROS production in melanoma cells. ROS are generated by isolated, cytosol-free melanoma plasma membranes, with inhibition by NAD(P)H oxidase inhibitors. The p22phox, gp91phox and p67phox components of the human phagocyte NAD(P)H oxidase, and the 91phox homolog NOX4 were demonstrated in melanomas by RT-PCR and sequencing, and protein product for both p22phox and gp91phox were detected in cell membranes by immunoassay. Normal human epidermal melanocytes expressed only p22phox and NOX4. Melanoma proliferation was reduced by NAD(P)H oxidase inhibitors and by transfection of antisense but not sense oligonucleotides for p22phox and NOX4. Also, the flavoprotein inhibitor diphenylene iodonium inhibited constitutive DNA binding of nuclear protein to the NF-kB and cyclic-AMP response element consensus oligonucleotides, without affecting DNA binding activity to AP-1 or OCT-1.
Owner:THE UNIV OF UTAH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products