Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

59results about How to "Inhibit tumor cell growth" patented technology

Targeted drug delivery using EphA2 or EphA4 binding moieties

The present invention relates to methods and compositions designed for the treatment, management, or prevention of a hyperproliferative cell disease, particularly cancer. The methods of the invention comprise the administration of an effective amount of a composition that targets cells expressing an Eph family receptor tyrosine kinase, such as EphA2 or EphA4, for the treatment, management, or prevention of hyperproliferative diseases, particularly cancer. In one embodiment, the method of the invention comprises administering to a subject a composition comprising an EphA2 or EphA4 targeting moiety attached to a delivery vehicle, and one or more therapeutic or prophylactic agents that treat or prevent a hyperproliferative disease, where the therapeutic or prophylactic agents are operatively associated with the delivery vehicle. In another embodiment, the method of the invention comprises administering to a subject a composition comprising a nucleic acid comprising a nucleotide sequence encoding an EphA2 or EphA4 targeting moiety and a therapeutic or prophylactic agent that treats or prevents a hyperproliferative disease. In yet another embodiment, the method of the invention comprises administering to a subject a composition comprising an EphA2 or EphA4 targeting moiety and a nucleic acid comprising a nucleotide sequence encoding an agent that treats or prevents a hyperproliferative disease, where the nucleic acid is operatively associated with the delivery vehicle. Pharmaceutical compositions are also provided by the present invention.
Owner:MEDIMMUNE LLC

Inhibition Of Superoxide Dismutase By Tetrathiomolybdate: Identification Of New Anti-Angiogenic And Antitumor Agents

Though copper is elevated in the tumor tissue and plasma of patients with various malignancies, the molecular targets for copper binding agents in angiogenesis and tumor progression remain poorly understood. It is disclosed that one anti-angiogenic target for the copper binding agent tetrathiomolybdate is intracellular CuZn-superoxide dismutase (SOD1). A second generation tetrathiomolybdate analog, ATN-224, inhibits endothelial cell (EC) proliferation in vitro, binds to SOD1 and inhibits its activity without displacing bound copper ATN-224 can accumulate in ECs and inhibit CuZnSOD activity with an IC50 similar to the IC50 for EC proliferation, resulting in increased generation of intracellular reactive oxygen species. Inhibition of EC proliferation by ATN-224 in vitro is substantially reversed by a synthetic porphyrin SOD mimetic. Similar results were observed in vivo, where inhibition of angiogenesis by ATN-224 in a Matrigel plug model was also reversed by MnTBAP. Thus, a distinct molecular target for copper depletion therapy has been identified and SOD1 is now validated as a target for anti-angiogenesis. Methods for screening, or designing, such SOD1 inhibitors for use as angiogenesis inhibitors and anti-cancer agents are disclosed.
Owner:ATTENUON LLC

Method for identification of cellular protein antigens and presence of antibodies to specific cellular protein antigens in serum

InactiveUS20040191841A1Facilitating tumor cell killingInhibit tumor cell growthMaterial analysisDiseaseADAMTS Proteins
The present invention relates to a method for identification of cellular protein antigens to which patients with cancer, or patients at risk for cancer, may develop autoantibodies. The method of the invention involves the use of patient derived sera for the identification of the cellular protein antigens using two-dimensional gel electrophoresis followed by Western Blot analysis. The identification of such protein antigens provides novel markers that can be utilized for screening, for diagnostics and prognosis of disease. The invention also provides for the use of the identified protein antigens in immunoassays designed to detect the presence of serum antibodies to the specific protein antigens in sera from individuals that may harbor such antibodies. The invention further relates to the use of the identified antigens as immunogens for stimulation of an immune response in patients expressing such protein antigens. The invention is demonstrated by way of example in which elevated levels of circulating autoantibodies reactive against a tumor specific antigen were identified in sera derived from a lung cancer patient. In addition, elevated levels of circulating autoantibodies reactive against several specific beta-tubulin isoforms were detected in the sera of neuroblastoma patients.
Owner:RGT UNIV OF MICHIGAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products