Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

756 results about "Liquid Crystalline Materials" patented technology

Display panel and display device using the same

A liquid crystal display panel includes a counter substrate having a counter electrode and a multi-layered dielectric film both formed thereon, and an array substrate formed with pixel electrodes and thin-film transistors serving as switching elements. A layer of polymer dispersed liquid crystal material containing a UV-curable resin component and a liquid crystal component is sandwiched and sealed between the counter and array substrates. A light shielding film is formed over each thin-film transistor. The multi-layered dielectric film is a laminated structure of alternating thin-films of SiO2 and HfO2. Since the multi-layered dielectric film is of a nature capable of transmitting UV-rays of light therethrough, the UV-curable resin component positioned underneath the multi-layered dielectric film can be cured during the manufacture. Also, since the multi-layered dielectric film is of a nature capable of reflecting light of a visible region, it serves as a black matrix, reflecting the visible light modulated by the display panel. Black beads are used to keep the film thickness of the liquid crystal layer at a predetermined value. Preferably, a dielectric thin-film having a relative dielectric constant smaller than that of the liquid crystal material is formed on signal lines for transmitting signals to the thin-film transistors, to thereby accomplish an electromagnetic shield. Where color filters are to be formed on the pixel electrodes, those color filters may be formed on the signal lines to accomplish the electromagnetic shield.
Owner:GK BRIDGE 1

Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays

The objective of the present invention is providing a method for fabricating high quality diffractive waveplates and their arrays that exhibit high diffraction efficiency over large area, the method being capable of inexpensive large volume production. The method uses a polarization converter for converting the polarization of generally non-monochromatic and partially coherent input light beam into a pattern of periodic spatial modulation at the output of said polarization converter. A substrate carrying a photoalignment layer is exposed to said polarization modulation pattern and is coated subsequently with a liquid crystalline material. The high quality diffractive waveplates of the present invention are obtained when the exposure time of said photoalignment layer exceeds by generally an order of magnitude the time period that would be sufficient for producing homogeneous orientation of liquid crystalline materials brought in contact with said photoalignment layer. Compared to holographic techniques, the method is robust with respect to mechanical noises, ambient conditions, and allows inexpensive production via printing while also allowing to double the spatial frequency of optical axis modulation of diffractive waveplates.
Owner:BEAM ENG FOR ADVANCED MEASUREMENTS

High-brightnesss color liquid crystal display panel employing light recycling therein

InactiveUS20020113921A1Good colorAvoiding shortcoming and drawbackLiquid crystal compositionsSolar heating energyDisplay devicePolarizer
Reflective color filters using layers of cholesteric liquid crystals with two different center wavelengths and bandwidths per layer are stacked in two layers to provide colored light for displays. With a two layer stack circularly polarized light of one handedness can be provided. With a four layer stack unpolarized colored light can be provided. With a broadband polarizing filter overlapping other filters in the stack a black matrix can be provided by reflecting all colors and transmitting no light in the overlapping areas. When broadband reflective cholesteric liquid crystals are used two primary colors can be reflected in the same pixel of a display making reflective layers with two reflective portions per layer possible. Color displays having three linear sub-pixels with three primary colors or with four sub-pixels of white, blue, green, and red in a pixel with two colors in a top row and two colors on a bottom row can are made with two colors per layer in two layer stacks. The pixels in the display are arranged such that multiple adjacent sub-pixels in a layer, or row in a layer, with the same color makes the color filters easier to manufacture. Displays using these reflective color filters may have a reflective polarizer for viewing the display at wide angles without color distortion. A method of producing cholesteric liquid crystal color filters by polymerizing different portions of cholesteric liquid crystal mixtures at different temperatures and radiations to obtain different central wavelengths and bandwidths of reflection. By masking parts of a layer several portions with different colors are polymerized in a single layer. Further, with radiation which is attenuated in the cholesteric liquid crystal material stacks of different portions reflecting different colors in the same layer are made. Further the cholesteric liquid crystals are polymerized to have other optical properties in the stack such as quarter wave plates and broad band polarizers such that entire optical devices can be made in one layer of cholesteric liquid crystal material making the devices smaller, lighter, more robust, reliable, and easier to make by eliminating gluing and alignment problems. With overlapping reflective cholesteric liquid crystal which together reflect all light stacks with automatic black matrixes built into the layer are made saving light from being blocked by conventional black matrix light absorbing layers in display devices.
Owner:REVEO

Light-scattering film and liquid crystal device using the film

A light-scattering film 10 is obtained by subjecting a birefringent material in a resin layer to orientation treatment, in which at least one component selected from a transparent resin 6 and a scattering material 7 is the birefringent material (e.g., a birefringent resin, a liquid crystalline material). According to the light-scattering film, in the case where a linear polarized light in which a vibrating direction and a propagating direction exist in a plane containing a surface-directional axis of the film and a thickness-directional axis of the film is incident at a film surface, the rectilinear transmittance of the incident light shows maximum at an oblique incident direction to the film surface (e.g., incident angle of 20 to 89°). The rectilinear transmittance of the incident light from a direction perpendicular to the film surface is 0 to 30%, and the rectilinear transmittance of the incident light from an oblique direction having an incident angle of 40 to 70° to the film surface is 50 to 100%. Directivity in a light-scattering property of the light-scattering film is improved, and even when an incident light comes from an oblique direction, brightness of the display surface from a front direction is improved. Therefore, the film is useful for employing in combination with a polarized plate of the liquid crystal display apparatus.
Owner:DAICEL CHEM IND LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products