Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

275 results about "W-CDMA" patented technology

W-CDMA or WCDMA, along with UMTS-FDD, UTRA-FDD, or IMT-2000 CDMA Direct Spread is an air interface standard found in 3G mobile telecommunications networks. It supports conventional cellular voice, text and MMS services, but can also carry data at high speeds, allowing mobile operators to deliver higher bandwidth applications including streaming and broadband Internet access. W-CDMA is the basis of Japan's NTT DoCoMo's FOMA service and the most-commonly used member of the Universal Mobile Telecommunications System (UMTS) family and sometimes used as a synonym for UMTS. It uses the DS-CDMA channel access method and the FDD duplexing method to achieve higher speeds and support more users compared to most previously used time division multiple access and time division duplex schemes. While not an evolutionary upgrade on the airside, it uses the same core network as the 2G GSM networks deployed worldwide, allowing dual mode mobile operation along with GSM/EDGE; a feature it shares with other members of the UMTS family.

Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation

A WCDMA system includes a Base Station (BS) or forward transmitter and a pilot channel that transmits control signals between a Mobile Station (MS) and BS to reconfigure their transmitter/receiver according to the prediction of the channel power and channel power probability density function separated into three distinct equal probable regions. Data signals are encoded using a one-half Viterbi encoder and interleaved. The interleaved data bits are modulated using Quadrature Phase Shift Keying (QPSK) modulation. The QPSK data is multiplexed with the pilot channel and spread by an appropriate code in an OFDM transmitter modified by a long code. Output of the transmitter may be provided to two diverse antennas for reliable communications to the receiver. Data may be received at two diverse antennas. The outputs are provided to match filters coupled to a coherent rake receiver and a channel prediction system. The future attenuation of the channel coefficients and power are determined by the prediction system for several milliseconds. The power levels of each finger in the Rake receiver can be predicted and the strongest ones used in determining the optimum transmitter power or rate control for operating the system transmitters and receivers based on computing a long range power prediction of each finger of a rake receiver.
Owner:WISTRON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products