Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

489results about "Fuel cell shape/form" patented technology

Fuel cell device and system

Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness. A reaction zone positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte separating first and second opposing electrodes, and active first and second gas passages adjacent the respective first and second electrodes. At least one cold zone positioned from the first end along another portion of the length is configured to remain below the operating reaction temperature. An artery flow passage extends from the first end along the length through the cold zone and into the reaction zone and is fluidicly coupled to the active first gas passage, which extends from the artery flow passage toward at least one side. The thickness of the artery flow passage is greater than the thickness of the active first gas passage. In other embodiments, fuel cell devices include an electrolyte having at least a portion thereof comprising a ceramic material sintered from a nano-sized powder. In yet other embodiments, cold zones are provided at each end of the device with the reaction zone therebetween having at least two discrete power sections, each having one or more active layers, the power sections fed by discrete fuel passages to provide a device and system capable of operating at more than one power level.
Owner:DEVOE ALAN +1

Solid Oxide Fuel Cell Device and System

The invention provides a solid oxide fuel cell device and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate substrate the length of which is the greatest dimension such that the elongate substrate has a coefficient of thermal expansion having only one dominant axis that is coextensive with the length. A reaction zone is provided along a first portion of the length for heating to an operating reaction temperature, and at least one cold zone is provided along a second portion of the length that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. A plurality of fuel passages and oxidizer passages are provided in the elongate substrate extending from the at least one cool zone to the reaction zone, each fuel passage having an associated anode in the reaction zone, and each oxidizer passage having an associated cathode in the reaction zone positioned in opposing relation to a respective one of the associated anodes. An electrolyte is disposed between each of the opposing anodes and cathodes in the reaction zone. The system further includes the devices positioned with their first portions in a hot zone chamber and their cold zones extending outside the hot zone chamber. A heat source is coupled to the hot zone chamber to heat the reaction zones to the operating reaction temperature. A fuel supply is coupled outside the hot zone chamber to the at least one cold zones in fluid communication with the fuel passages for supplying a fuel flow into the fuel passages.
Owner:DEVOE ALAN +1

Liquid circuit built-in aluminium air fuel cell monomer and cell stack

The invention relates to a liquid circuit built-in aluminium air fuel cell monomer and a cell stack. The liquid circuit built-in aluminium air fuel cell monomer comprises a first flat grid mesh, a first air electrode, a matrix frame, a second air electrode and a second flat grid mesh which are sequentially arranged, wherein the first air electrode is used as a cathode; the matrix frame is provided with a side port for enabling an aluminium alloy electrode used as an anode to be inserted in; a first electrolyte pipe orifice and a second electrolyte pipe orifice are also formed outside the matrix frame. The cell stack comprises a plurality of liquid circuit built-in aluminium air fuel cell monomers which are connected in series and a gap is reserved between every two adjacent cell monomers; support pillars are arranged at the edges of the first flat grid meshes; the first electrolyte pipe orifice in each cell monomer is connected with the second electrolyte pipe orifice in the adjacent cell monomer; the first and second air electrodes in each cell monomer are connected with the aluminium alloy electrode used as the anode in the adjacent cell monomer. According to the invention, a fuel cell pipeline is simple, the engineering degree is high, the guarantee is simple, the operation is convenient, the processing consistency is good, and the recycling and reusing can be realized.
Owner:PLA SECOND ARTILLERY ENGINEERING UNIVERSITY

Solid Oxide Fuel Cell Device and System, Method of Using and Method of Making

A solid oxide fuel cell device that includes an elongate substrate having a first end and an opposing second end with a length therebetween, a cold zone along a first portion of the length adjacent the first end, and a hot reaction zone along a second portion of the length adjacent the second end. The hot reaction zone is configured to be heated to an operating reaction temperature, and the cold zone is configured to remain at a low temperature below the operating reaction temperature. A fuel inlet and air inlet are each positioned in the cold zone and coupled to respective elongate fuel and oxidizer passages that extend through the hot reaction zone within the elongate substrate in parallel and opposing relation to respective fuel and air outlets adjacent the first end. An anode and a cathode are each positioned adjacent a respective fuel and oxidizer passage in the hot reaction zone within the elongate substrate and each is electrically coupled to a respective first and second exterior contact surface on the elongate substrate in the cold zone. A solid electrolyte is positioned between the anode and cathode, and negative and positive electrical connections are made to the respective first and second exterior contact surfaces. A fuel cell system is also provided incorporating a plurality of the fuel devices with their hot reaction zones positioned in a hot zone chamber and their cold zones extending outside the hot zone chamber. A heat source is coupled to the hot zone chamber to heat the reaction zones to the operating reaction temperature. Fuel and air supplies are coupled outside the hot zone chamber to the cold zones for supplying fuel and air flows into the respective fuel and oxidizer passages. A method of making a solid oxide fuel cell device is also provided in which fluid anode and cathode materials are flowed into passages followed by liquid removal to thereby form anodes and cathodes in the passages.
Owner:DEVOE ALAN +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products