Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

238 results about "Electro catalyst" patented technology

Preparation method of catalyst with core-shell structure for low-temperature fuel cell

The invention discloses a preparation method of a catalyst with a core-shell structure for a low-temperature fuel cell, belonging to the technical field of fuel cells. In the catalyst with the core-shell structure prepared with the preparation method, platinum is taken as a shell, a metal alloy consisting of more than one of metals including ruthenium, platinum, iron, cobalt, nickel, copper, tin, iridium, gold and silver is taken as an inner core, and the shell and the inner core are loaded on a carbon carrier. The preparation method comprises the following preparation steps of: reducing a metal chloride or a metal nitrate with a reducing agent, and forming a core on the carbon carrier with a large specific surface area; stabilizing the core; and precipitating Pt on a core layer with a impregnation reduction method, a high-pressure organic sol method, a microwave method or an electrodeposition process to form the catalyst with the core-shell structure. Due to the adoption of the preparation method, the utilization ratio of noble metal platinum is increased, the cost of an electro-catalyst is reduced effectively, and the methanol oxidizing capability and oxygen reducing activity of the obtained catalyst are increased by 10.8 times and 8.7 times in maximum respectively in comparison to the mass ratio and activity of a commercial JM4100Pt/C catalyst.
Owner:SOUTH CHINA UNIV OF TECH

Heteroatom-doped porous graphite electro-catalyst and preparation and application thereof as well as device

The invention belongs to the field of carbon materials and electrochemistry, and discloses a heteroatom-doped porous graphite electro-catalyst and preparation and application thereof as well as a device. The method comprises the following steps: firstly adding concentrated HNO3 into a graphite oxide aqueous solution, performing sealing, ultrasonic reaction and stewing, and pouring the solution into deionized water for centrifugation, filtering and drying to obtain graphite oxide with holes in the surface; uniformly mixing the graphite oxide with holes in the surface, a heteroatom-doped source compound and a solvent to obtain a mixture, coating the surface of a substrate with the mixture, and performing freeze drying to obtain a solid thin film; putting the substrate loaded with the solid thin film into a plasma high-temperature tubular reactor for reaction to obtain the heteroatom-doped porous graphite electro-catalyst. The prepared electro-catalyst is higher in oxygen reduction electro-catalytic performance and is higher in electrochemical performance when applied in an electrode material; the electro-catalyst can be applied to the field of proton exchange membrane fuel batteries, direct alcohol fuel batteries and metal-air battery anode materials.
Owner:SOUTH CHINA UNIV OF TECH

Preparation method and application of iron-nitrogen co-doped porous carbon sphere material

The invention discloses a preparation method for an iron-nitrogen co-doped porous carbon sphere material. The preparation method comprises the following steps: by taking 2-aminopyridine as a monomer and taking ammonium persulfate and ferric chloride as oxidants, performing in-situ polymerization reaction in a duct of a porous silicon dioxide template to obtain a precursor; performing high-temperature carbonization treatment on the precursor in a tubular furnace and an inert gas nitrogen-gas environment; and removing the silicon dioxide template by hydrofluoric acid to obtain the iron-nitrogen co-doped porous carbon sphere material which is taken as an electric catalyst to achieve good catalytic effect in oxygen gas reduction reaction. The preparation method has the advantages that the process is simple and easy to perform and the raw materials are cheap. The prepared carbon material contains a three-dimensional communicated pore structure, has a high specific surface area and a large pore volume, can effectively improve the electric catalytic activity through the heteroatom nitrogen-iron doping, has relatively high electric catalytic efficiency while being applied as a low-price electric catalyst, and has an important value and significance in the fields of doped type porous carbon material preparation and proton membrane fuel battery electric catalysis.
Owner:NANKAI UNIV

Poly-dopamine based porous carbon fiber/MoSe2 composite material and preparation method thereof

The invention belongs to the technical field of a composite fiber material, in particular relates to a poly-dopamine based porous carbon fiber / MoSe2 nanosheet composite material and a preparation method thereof. The method comprises the following steps of preparing a spinning solution with a spinnable high-polymer material, and preparing to obtain porous fiber with an uniform structure by an electrostatic spinning device; immersing the porous fiber in a dopamine solution, and controlling the thickness of a poly-dopamine cladding layer by adjusting the concentration and the reaction time of the dopamine solution; carrying out high-temperature carbonization to achieve carbonization on the poly-dopamine modified porous fiber material; and uniformly arranging MoSe2 nanosheets on the surface of the porous fiber by a hydrothermal method. The method disclosed by the invention is safe and environment-friendly, and the prepared porous carbon fiber / MoSe2 has the advantages of high active substance content, high specific area, high conductivity, stable physical and chemical performance and the like, and is an ideal electrode material for preparing an active electric catalyst for a hydrogen evolution reaction.
Owner:FUDAN UNIV

High-performance ultrathin nitride electro-catalyst with functions of producing hydrogen and oxygen by means of electrochemically totally decomposing water, method for synthesizing high-performance ultrathin nitride electro-catalyst and application thereof

The invention discloses a high-performance ultrathin nitride electro-catalyst with functions of producing hydrogen and oxygen by means of electrochemically totally decomposing water, a method for synthesizing the high-performance ultrathin nitrite electro-catalyst and application thereof. A chemical formula of the high-performance ultrathin nitride electro-catalyst is (Fe<X>Ni<1-X>)<4>N, and the x is larger than 0 and is smaller than 1. The nitrite electro-catalyst is of an ultrathin nanometer plate structure, the size of the nitrite electro-catalyst is 50-100nm, and the thickness of the nitrite electro-catalyst is 1.5-3nm. The method includes synthesizing NiFe hydrotalcite precursors at first; nitriding the NiFe hydrotalcite precursors at high temperatures under the protection of ammonia gas to obtain end products. The high-performance ultrathin nitride electro-catalyst, the method and the application have the advantages that series of nitrite have large specific surface areas, are good in electron conductance and are excellent in performance during electro-catalytic water total-decomposition reaction, limiting currents are higher than limiting currents of Pt/C during electro-catalytic hydrogen evolution reaction (HER), and the performance of the nitride in various aspects are superior to the performance of corresponding oxide NiFe-MMO during oxygen evolution reaction (OER); the electro-catalyst is low in cost, easy and convenient to operate, simple in process and excellent in catalytic performance, and fundamental application research on materials in the field of electro-catalysis can be provided.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Method for preparing carbon-supported nano Pt-M fuel cell catalyst

The invention provides a method for preparing a carbon-supported nano Pt-M fuel cell catalyst. The method comprises the following steps of: (1) dissolving H2PtCl6.6H2O and an M compound with alcohol respectively, combining the dissolved H2PtCl6.6H2O and M compound and ultrasonically processing the mixture for 10 to 20 minutes at the temperature of between 25 and 60 DEG C; (2) performing dry-dipping on a Pt-M active precursor prepared in the step (1) on a carbon support and dehydrating the carbon support with microwave to a constant weight; (3) adding water into the carbon support obtained by the step (2) for pasting and adding a reducing agent into the carbon support for reduction; and (4) filtering, washing and dehydrating the obtained product with microwave to obtain a Pt-M/C catalyst. The nano Pt-M binary alloy fuel cell catalyst prepared by the method of the invention solves the problems of difficult control over graininess and dispersion degree, high platinum load, low adsorption rate, agglomeration and the like existing in the conventional method for preparing an electro-catalyst and has the advantages of simple process, environmental friendliness, relatively low cost, high anti-CO poisoning capacity, high dispersion degree, small grain size, high catalytic performance and the like.
Owner:CHENZHOU GAOXIN MATERIAL

Preparation and application of NiWP electric catalyst material with three-dimensional structure

The invention relates to a preparation and application of a NiWP electric catalyst material with a three-dimensional structure, which belongs to the technical field of clean energy materials. The preparation comprises the following steps: preprocessing foam metal (cathode matrix material) and a pure nickel sheet (anode material) to remove oxides and impurities on the surface; respectively adding a nickel salt and tungsten salt into distilled water according to a ratio, uniformly dissolving in a magnetic stirrer, adding a complexing agent, stirring and dissolving the complexing agent in a tungsten salt-containing solution, mixing the two solutions, then adding a phosphorus salt, uniformly stirring, and finally adjusting a pH value of plating solution by utilizing sulfuric acid and ammonia water; and performing the electric precipitation under a given current density and temperature by adopting a direct-current voltage stabilizing power supply, after a given time of precipitation, cleaning the surface of a test sample by utilizing deionized water, and drying at a room temperature to obtain the NiWP electric catalyst with the three-dimensional structure. The electric catalyst prepared by using the method can effectively reduce overpotential of water electrolysis hydrogen evolution reaction and oxygen evolution reaction by virtue of electrochemical test, and has good circulating stability. The preparation method is simple in process procedures, easy in operation and good in application prospect.
Owner:BEIJING UNIV OF TECH

Electrochemiluminescence imaging system

The invention relates to an electrochemiluminescence imaging system, which comprises an electrochemical reaction pool, an electrochemiluminescence imaging pool, a stabilized voltage direct current power supply and a CCD (Charge Coupled Device) imaging unit, wherein the electrochemical reaction pool is electrically connected with the electrochemiluminescence imaging pool through at least one bipolar electrode; a pole of the bipolar electrode is arranged in the electrochemical reaction pool, the other pole of the bipolar electrode is arranged in the electrochemiluminescence imaging pool, and the two poles are connected through a wire; a driving electrode is also arranged in the electrochemical reaction pool and the electrochemiluminescence imaging pool respectively; the two driving electrodes are connected with a positive electrode and a negative electrode of the stabilized voltage direct current power supply through a wire respectively; and an electrochemiluminescence phenomenon in the electrochemiluminescence imaging pool is recorded by the CCD imaging unit. The electrochemiluminescence imaging system has the advantages of simple instrument, low cost, high detection sensitivity, quickness and high energy, and has great significance to promotion of development of basic electrochemical science research, high-flux and high-sensitivity analysis detection and a screening technology of electro-catalysts in fuel cells.
Owner:FUZHOU UNIV

Method for preparing carbon-supported nano-platinum-chromium intermetallic compound serving as cathode catalyst of proton exchange membrane fuel cell

The invention relates to the relevant technical fields of energy and catalysis, in particular to a method for preparing a carbon-supported nano-platinum-chromium intermetallic compound serving as a cathode catalyst of a proton exchange membrane fuel cell. The invention provides a method for preparing the carbon-supported nano-platinum-chromium intermetallic compound serving as the cathode catalyst of the proton exchange membrane fuel cell on the basis of a metal carbonyl cluster compound. The method comprises the following steps: (1) synthesizing the metal carbonyl cluster compound serving as a catalyst precursor; (2) injecting a carbon support; (3) performing thermal treatment on a catalyst intermediate; (4) forming the intermetallic compound. According to the method for preparing the carbon-supported nano-platinum-chromium intermetallic compound serving as the cathode catalyst of the proton exchange membrane fuel cell on the basis of the metal carbonyl cluster compound, provided by the invention, the prepared nano-platinum-chromium intermetallic compound has the characteristics of uniform distribution, high electric catalytic oxidation reduction performance, high stability and the like.
Owner:SHANGHAI ADVANCED RES INST CHINESE ACADEMY OF SCI

Method for simultaneously preparing furfuryl alcohol and furoic acid on the basis of bipolar membrane technology

The invention relates to the field of electrochemical synthesis, in particular to a method for simultaneously preparing furfuryl alcohol in a cathode chamber and preparing furoic acid in an anode chamber on the basis of bipolar membrane technology, which has the effects of environmental protection, energy saving and emission reduction. By utilizing the principle that bipolar membranes are dissociated under the action of an electric field, hydrogen ions and hydroxide ions produced after water dissociation are respectively introduced into a cathode chamber and an anode chamber so as to regulatethe pH value of the reaction medium. The method electrooxidizes furfurol to prepare furoic acid in the anode chamber by utilizing an electro-catalyst MnO2/MnOOH, and the electro-catalyst can be repetitively used so as to have the effects of environmental protection, energy saving and emission reduction; the method reduces the furfurol to prepare furfuryl alcohol in the cathode chamber by utilizingthe furfurol as the raw material. Compared with the traditional process, the method eliminates the pollution of the catalyst chromium in the production of the furfuryl alcohol and the furoic acid, has the advantages of mild production condition and simple equipment, and is a novel process having the advantages of environmental protection and energy saving.
Owner:FUJIAN NORMAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products