Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1003results about "Holographic object characteristics" patented technology

Holographic Image Display Systems

The invention relates to holographic head-up displays, to holographic optical sights, and also to 3D holographic image displays. We describe a holographic head-up display and a holographic optical sight, for displaying, in an eye box of the display / sight, a virtual image comprising one or more substantially two-dimensional images, the head-up display comprising: a laser light source; a spatial light modulator (SLM) to display a hologram of the two-dimensional images; illumination optics in an optical path between said laser light source and said SLM to illuminate said SLM; and imaging optics to image a plane of said SLM comprising said hologram into an SLM image plane in said eye box such that the lens of the eye of an observer of said head-up display performs a space-frequency transform of said hologram on said SLM to generate an image within said observer's eye corresponding to the two-dimensional images.
Owner:LIGHT BLUE OPTICS

Touch Sensitive Image Display

InactiveUS20110248963A1Great optical apertureResolution detectionTelevision system detailsEnergy efficient ICTMultiplexingAcute angle
We describe a touch sensitive image display device for projecting a touch sensitive displayed image at an acute angle onto a surface on which the device is placed. The device comprises: light sources to project two-dimensional first and second light distributions in respective first and second planes; and a multi-pixel sensor system to remotely detect touch of an area of said surface within or adjacent to the displayed image by detecting light from the first distribution to provide a detected touch signal. The multi-pixel sensor system also remotely detects presence of an object within the second light distribution to provide a detected presence signal. The device is configured to multiplex projection of the first light and second distributions. A controller has an input to receive the detected touch and detected presence signals and is configured to control the device responsive to these signals.
Owner:PROMETHEAN

Method of computing a hologram

A method of computing a hologram by determining the wavefronts at the approximate observer eye position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window that would be generated by a real object located at the same position of the reconstructed object. One can then back-transforms these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram can then generate a reconstruction of the three-dimensional scene that can be observed by placing one's eyes at the plane of the observer window and looking through the observer window.
Owner:SEEREAL TECHNOLOGIES

Device for holographic reconstruction of three-dimensional scenes

A device for holographic reconstruction of three-dimensional scenes includes optical focusing means which directs sufficiently coherent light from light means to the eyes of at least one observer via a spatial light modulator that is encoded with holographic information. The device has a plurality of illumination units for illuminating the surface of the spatial light modulator (SLM); each unit comprises a focusing element (21 / 22 / 23 or 24), and a light means (LS1 / LS2 / LS3 or LS4) that emits sufficiently coherent light such that each of these illumination units illuminates one separate illuminated region (R1 / R2 / R3 or R4) of the surface, whereby the focusing element and the light means are arranged such that the light emitted by the light means (LS1-LS4) coincides close to or at the observer eyes.
Owner:SEEREAL TECHNOLOGIES

Apparatus method and system for imaging

There is provided in accordance with some embodiments of the present invention an optical assembly including a set of optical paths, wherein two or more optical paths receive an image from a common surface. The optical paths may direct received images onto a common image sensor generating a complex multidimensional data set, an image processing block may extrapolate each of the subset of optical paths printed on the image sensor and may generate a multidimensional data set based on the collected images.
Owner:EXTREME REALITY

System for the production of a dynamic image for display

A system for the production of a dynamic image for use in holography includes a light source (16) which travels via a liquid crystal modulator (18) placed in the path of the light source (16). The output of the LC modulator (18) passes modulated light through a lens array (22) which itself guides light to an optically addressed spatial light modulator (24). The resulting real image from the optically addressed spatial light modulator (24) may be used in holography. The addressing frame-rate of the liquid crystal modulator (18) is substantially greater than the frame-rate of the optically addressed spatial light modulator (24).
Owner:F POSZAT HU

Enhanced environment visualization using holographic stereograms

Hologram production techniques can combine source data representing realistic information describing an environment with source data providing representational information describing a feature of the environment and / or some object interacting with the environment. The combined data is used to produce holograms, and particularly holographic stereograms including features that enhance the visualization of the environment depicted in hologram. A haptic interface can be used in conjunction with such holograms to further aid use of the hologram, and to provide an interface to secondary information provided by a computer and related to the images depicted in the hologram.
Owner:FOVI 3D INC

Stereoscopic image format with depth information

A multi-view distribution format is described for stereoscopic and autostereoscopic 3D displays. In general, it comprises multi-tile image compression with the inclusion of one or more depth maps. More specifically, it provides embodiments that utilize stereoscopic images with one or more depth maps typically in the form of a compressed grey scale image and, in some instances, incorporates depth information from a second view encoded differentially.
Owner:REAID INC

Method and apparatus for aligning microbeads in order to interrogate the same

A method and apparatus are provided for aligning optical elements or microbeads 8, wherein each microbead has an elongated body with a code embedded therein along a longitudinal axis thereof to be read by a code reading device. The microbeads 8 are aligned with a positioning device (or cell) 500 having a plate or platform 200, 1252 with grooves 205, 1258 so the longitudinal axis of the microbeads is positioned in a fixed orientation relative to the code reading device. The microbeads 8 are typically cylindrically shaped glass beads having a diffraction grating-based code embedded in the bead 8 disposed along an axis, which requires a predetermined alignment between the incident code readout laser beam and the code readout detector in two of three rotational axes. The geometry of the grooves 205 are designed to allow for easy loading and unloading of beads from a cell, and the grooves 205 may be straight or curved. Also, the cell may be segmented into regions each associated with a different reaction or used for a different identification process / application, and may have many different geometries depending on the application.
Owner:ILLUMINA INC

Optically addressable spatial light modulator divided into plurality of segments, and holographic three-dimensional image display apparatus and method using the light modulator

Provided are an optically addressable spatial light modulator (OASLM) divided into a plurality of segments, and an apparatus and method for displaying a holographic three-dimensional (3D) image using the OASLM. The holographic 3D image display apparatus includes a first light source which emits a write beam, an electric addressable spatial light modulator (EASLM) which modulates the write beam emitted from the first light source according to hologram information regarding a 3D image, a second light source which emits a read beam, an OASLM which receives the write beam modulated by the EASLM and modulates the read beam emitted from the second light source according to hologram information included in the modulated write beam, a scanning optical unit which projects the write beam modulated by the EASLM onto the OASLM, and a Fourier lens which focuses the read beam modulated by the OASLM onto a predetermined space to form the 3D image.
Owner:SAMSUNG ELECTRONICS CO LTD +1

Controllable waveguide for near-eye display applications

A near-eye display includes an image generator that generates angularly related beams over a range of angles for forming a virtual image and a waveguide that propagates the angularly related beams over a limited range of angles. An input aperture of the waveguide includes a plurality of controllable components that are selectively operable as diffractive optics for injecting subsets of the angularly related beams into the waveguide. An output aperture of the waveguide includes a plurality of controllable components that selectively operable as diffractive optics for ejecting corresponding subsets of the angularly related beams out of the waveguide toward an eyebox. A controller synchronizes operation of the controllable components of the output aperture with the propagation of different subsets of angularly related beams along the waveguide for ejecting the subsets of angularly related beams out of the waveguide for presenting the virtual image within the eyebox.
Owner:VUZIX

Video hologram and device for reconstructing video holograms for large objects

A video holographic display device operates so that the size of a reconstructed three dimensional scene is a function of the size of the hologram-bearing medium; the reconstructed three dimensional scene can then be anywhere within a volume defined by the hologram-bearing medium and a virtual observer window through which the reconstructed three dimensional scene must be viewed. This contrasts with conventional holograms, in which the size of the reconstructed scene is localised to a far smaller volume and is not a function of the size of the hologram-bearing medium at all.
Owner:SEEREAL TECHNOLOGIES

System and method for encoding and decoding an image or document and document encoded thereby

Holographic and diffractive security devices and documents carrying security devices as well as system, apparatus, and method for making and using security devices. Security devices provide at least one type of security feature in form of secret, hidden, or covert security feature, not visible to a normal unaided human eye. Covert security features may be any graphic or symbolic representation. One or multiple security features may be provided on any single security device in any combination. Covert feature is revealed either when a decoder device is used with the security device, or when the security device is oriented and viewed in predetermined manner. Embodiments may provide a second overt or non-covert security device in the form of a diffractive or holographic image or graphic that is visible to the unaided eye without use of any decoder or special viewing conditions.
Owner:PACIFIC HOLOGRAPHICS

High Resolution Display

Disclosed is a high resolution display on which decompressed high resolution image data is displayed, the display including pixels, the pixels being on a substrate, where circuitry is present on the same substrate as the pixels, where compressed high resolution image data which has been compressed using known data compression techniques is received by the circuitry, the circuitry being operable to perform decompression calculations which provide subsequent display of decompressed high resolution image data by the pixels of the display.
Owner:SEEREAL TECHNOLOGIES

Method and device for computing computer-generated video holograms

The data defining an object to be holographically reconstructed is first arranged into a number of virtual section layers, each layer defining a two-dimensional object data sets, such that a video hologram data set can be calculated from some or all of these two-dimensional object data sets. The first step is to transform each two-dimensional object data set to a two-dimensional wave field distribution. This wave field distribution is calculated for a virtual observer window in a reference layer at a finite distance from the video hologram layer. Next, the calculated two-dimensional wave field distributions for the virtual observer window, for all two-dimensional object data sets of section layers, are added to define an aggregated observer window data set. Then, the aggregated observer window data set is transformed from the reference layer to the video hologram layer, to generate the video hologram data set for the computer-generated video hologram.
Owner:SEEREAL TECHNOLOGIES

Holographic display device comprising magneto-optical spatial light modulator

A holographic display device comprising at least one magneto-optical spatial light modulator (MOSLM). The holographic display device may comprise a first MOSLM and a second MOSLM, the first and second MOSLMs encoding a hologram and a holographic reconstruction being generated by the device. An advantage of the device is fast encoding of holograms.
Owner:SEEREAL TECHNOLOGIES

Encoded particle having a grating with variations in the refractive index

Microparticles 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 having a plurality of colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 with a narrow band (single wavelength) or multiple wavelength source, in which case the code is represented by a spatial distribution of light or a wavelength spectrum, respectively. The code may be digital binary or may be other numerical bases. The micro-particles 8 can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The micro-particles 8 are functionalized by coating them with a material / substance of interest, which are then used to perform multiplexed experiments involving chemical processes, e.g., DNA testing and combinatorial chemistry.
Owner:ILLUMINA INC

Security device

InactiveUS6903850B2High technological barrierNovel attractive appearanceOther printing matterPhotomechanical apparatusSurface relief
A security device has a substrate formed with a surface relief defining an optically variable effect generating structure. At least two different reflection enhancing materials are provided on, or on the same side of, substrate with respect to the surface relief, whereby the optically variable effect can be viewed against a background defined by the reflection enhancing materials.
Owner:DE LA RUE INT LTD

Holographic display device

A holographic display comprising light sources (L51, L52, . . . ) in a 2D light source array, lenses (L1, L2, . . . ) in a 2D lens array, a spatial light modulator (SLM) and a beamsplitter, in which there are m light sources per lens, and the light sources are in m-to-one correspondence with the lenses. The beamsplitter splits the rays leaving the SLM into two bundles, one of which illuminates the virtual observer windows for m left eyes (VOWL) and the other illuminates the virtual observer windows for m right eyes (VOWR). In one example, m=1. An advantage is 2D-encoding with vertical and horizontal focusing and vertical and horizontal motion parallax.
Owner:SEEREAL TECHNOLOGIES

Method and apparatus for labeling using diffraction grating-based encoded optical identification elements

A method and apparatus for labeling an item using diffraction grating-based encoded optical identification elements 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 has one or more colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The element 8 can provide a large number of unique codes, e.g., greater than 67 million codes, and can withstand harsh environments. The encoded element 8 may be used to label any desired item, such as large or small objects, products, solids, powders, liquids, gases, plants, minerals, cells and / or animals, or any combination of or portion of one or more thereof. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft / anti-counterfeit, security / anti-terrorism, or for other purposes. In a manufacturing environment, the elements 8 may be used to track inventory for production information or sales of goods / products.
Owner:CYVERA CORP

Holographic Projection System with Optical Wave Tracking and with Means for Correcting the Holographic Reconstruction

A holographic projection system with a display screen and an optical wave tracking means for controlling the direction of propagation of a modulated wave uses a position controller and an eye finder. An extremely wide tracking range is realised in the projection system for simultaneous viewing of the reconstruction by multiple observers, which are situated beside one another. The reconstruction of the scene is reconstructed for each eye position of an observer such that the entire scene is visible in the visibility region in a large tracking range with minimal errors. The projection system reconstructs the scene with the help of modulated partial waves. Projection means direct these partial waves with separately holographically reconstructed segments of the scene at the desired eye position through a structure of screen segments which are at least horizontally staggered on the display screen.
Owner:SEEREAL TECHNOLOGIES

Auto Stereoscopic 3D Telepresence Using Integral Holography

A holographic direct-view display system uses holographic integral imaging techniques that is an auto stereoscopic way to reproduce parallax and occlusion. The display is not resolution limited and is scalable to display life size images if desired. The system can be used to transmit 3D depictions of a scene at video and sub-video rates as well as other information, such as images of documents or computer generated images. The images may be captured, transmitted and displayed in real-time (or near real-time) for telepresence or stored for time-shifted display. The system combines integral holography, a pulsed laser to record the hologram at high speed and a dynamic refreshable holographic material such as a photorefractive polymer as a recording media. The system uses techniques to write, read and erase the updateable hologram that allow the holographic material, hence direct-view display to remain stationary throughout each of the processes for continuous presentation of the hologram to the audience. The system may write, read and erase at the same time and continuously to increase throughput. This system may also use additional novel techniques to improve brightness, efficiently implement a full-parallax display and to implement a full-color display in a transmission geometry.
Owner:TIPD +1

Security Devices Incorporating Optically Variable Adhesive

A structure for providing an optical effect comprises a first and second substrates hot stamped together by an adhesive. The adhesive comprises an energy activated binder having a plurality of particles distributed therein or thereon for providing the optical effect detectable through the first substrate.
Owner:VIAVI SOLUTIONS INC

Scanner device and device for measuring three-dimensional shape of object

A laser beam is reflected by a light beam scanning device and irradiated onto a hologram recording medium. On the hologram recording medium, an image of a linear scatter body is recorded as a hologram by using reference light that converges on a scanning origin. The light beam scanning device bends the laser beam at the scanning origin and irradiates the laser beam onto the hologram recording medium. At this time, by changing a bending mode of the laser beam with time, an irradiation position of the bent laser beam on the hologram recording medium is changed with time. Diffracted light from the hologram recording medium produces a reproduction image of the linear scatter body on a light receiving surface of the stage. When an object is placed on the light receiving surface, a line pattern is projected by hologram reproduction light, so that the projected image is captured and a three-dimensional shape of the object is measured.
Owner:DAI NIPPON PRINTING CO LTD

Data carrier with an optically variable element

InactiveUS6036232AIncrease product assuranceProvide authenticityOther printing matterLight effect designsEngineering
PCT No. PCT / EP97 / 01411 Sec. 371 Date Mar. 3, 1998 Sec. 102(e) Date Mar. 3, 1998 PCT Filed Mar. 20, 1997 PCT Pub. No. WO97 / 35732 PCT Pub. Date Oct. 2, 1997The invention relates to a data carrier, in particular bank note, paper of value, identity card or the like, having a security element disposed on the surface thereof. The data carrier is provided in at least one partial area with a background layer containing at least one authenticity feature. The optically variable element is applied to this background layer such that it overlaps the latter at least partly but does not completely cover it.
Owner:GIESECKE & DEVRIENT CURRENCY TECHNOLOGY GMBH

Method and device for encoding and reconstructing computer-generated video holograms

A method and a device for encoding and reconstructing computer-generated video holograms using a conventional LC display: it provides holographic reconstruction of three-dimensional scenes using electronically controllable pixel in a holographic array (3) with a conventional resolution, and is reasonably free from flickering and cross-talk. Reconstruction is in real time, and for both eyes at the same time, over a large viewing zone. The method takes advantage of an optical focusing means (2) in order to image vertically coherent light emitted by a line light source (1) into viewing windows (8R, 8L) after modulation by the pixel array (3). The holographic reconstruction (11) of the scene is rendered visible from viewing windows (8R, 8L) for both eyes of an observer by way of diffraction at the pixels. According to the invention, the controllable pixels are disposed in vertical pixel columns (15, 16), which encode separate holograms of the same scene for each of the viewer's eyes (R, L), where said holograms are one-dimensional in the vertical direction and horizontally interleaved. An image separation means (7) with separating elements arranged parallel to the pixel columns reveals the respective pixel columns (15, 15′ or 16, 16′) for one eye and covers them for the other eye.
Owner:SEEREAL TECHNOLOGIES

Holographic user interfaces for medical procedures

An interactive holographic display system includes a holographic generation module configured to display a holographically rendered anatomical image. A localization system is configured to define a monitored space on or around the holographically rendered anatomical image. One or more monitored objects have their position and orientation monitored by the localization system such that coincidence of spatial points between the monitored space and the one or more monitored objects triggers a response in the holographically rendered anatomical image.
Owner:KONINKLJIJKE PHILIPS NV

Methods and systems for recording to holographic storage media

According to one aspect and example, a method for recording holographic media and / or holographic master data masks includes recording at least a first hologram or information layer with a first holographic medium (e.g., a “submaster”) and recording at least a second information layer with a second holographic medium (e.g., a second “submaster”). The first information layer and the second information layer from the first and second holographic media are then sequentially reconstructed and stored with a single holographic master medium (e.g., a “master”). The holographic master may then be used to record the stored first and second information layers into additional holographic media, for example, into HROM devices or the like.
Owner:AKONIA HOLOGRAPHICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products