Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

77 results about "Activation pattern" patented technology

Methods for interactive visualization of spreading activation using time tubes and disk trees

Methods for displaying results of a spreading activation algorithm and for defining an activation input vector for the spreading activation algorithm are disclosed. A planar disk tree is used to represent the generalized graph structure being modeled in a spreading activation algorithm. Activation bars on some or all nodes of the planar disk tree in the dimension perpendicular to the disk tree encode the final activation level resulting at the end of N iterations of the spreading activation algorithm. The number of nodes for which activation bars are displayed may be a predetermined number, a predetermine fraction of all nodes, or a determined by a predetermined activation level threshold. The final activation levels resulting from activation spread through more than one flow network corresponding to the same generalized graph are displayed as color encoded segments on the activation bars. Content, usage, topology, or recommendation flow networks may be used for spreading activation. The difference between spreading activation through different flow networks corresponding to the same generalized graph may be displayed by subtracting the resulting activation patterns from each network and displaying the difference. The spreading activation input vector is determined by continually measuring the dwell time that the user's cursor spends on a displayed node. Activation vectors at various intermediate steps of the N-step spreading activation algorithm are color encoded onto nodes of disk trees within time tubes. The activation input vector and the activation vectors resulting from all N steps are displayed in a time tube having N+1 planar disk trees. Alternatively, a periodic subset of all N activation vectors are displayed, or a subset showing planar disk trees representing large changes in activation levels or phase shifts are displayed while planar disk trees representing smaller changes in activation levels are not displayed.
Owner:XEROX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products