Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

41 results about "Photonic network" patented technology

Hybrid photonic crystal fiber, and method for manufacturing same

The present invention relates to a hybrid photonic crystal fiber, into the core of which a functional material is injected. The hybrid photonic crystal fiber of the present invention comprises: a central hole having a diameter of 4 to 15 μm extending in the longitudinal direction; an inner cladding also formed in the longitudinal direction outside the central hole, having a hexagonal arrangement of air holes, each of which has a diameter of 2 to 5 μm and a lattice constant of 4.5 to 7 μm; an annular outer cladding surrounding the outer surface of the inner cladding; and a core formed by filling a functional material in some of the air holes including the central hole. According to the present invention, changes in the state, i.e. the liquid, liquid-crystal, or biofluid states, of the functional material that fills the core that has a variety of shapes may enable the modulation of light intensity, wavelength, phase, and polarization, and thus enable various photonic networks to be produced. The hybrid photonic crystal fiber of the present invention may serve as various optical sensors capable of sensing changes in refractive index caused by external stresses such as temperature and pressure. The hybrid photonic crystal fiber of the present invention may be used as a light source for a fluorescent dye laser for a visible ray zone using fluorescent dye, or for an ultra-wideband laser of 700 nm or higher using high nonlinear liquid.
Owner:IND ACADEMIC CORP FOUND YONSEI UNIV

Dynamic assignment of wavelengths in agile photonic networks

In an automatically switched optical network, the wavelengths are assigned to optical path based on their intrinsic physical performance and on the current network operating parameters. The wavelength performance information is organized in binning tables, based primarily on the wavelength reach capabilities. A network topology database provides the distance between the nodes of the network, which is used to determine the length of the optical path. Other network operating parameters needed for wavelength selection are also available in this database. Once a bin corresponding to the path length is identified in the binning table, the wavelength for that path is selected based on length only, or based on the length and one or more additional parameters. The optical path performance is estimated for the selected wavelength, and the search continues if the estimated path performance is not satisfactory. Several available wavelengths are searched and of those, the wavelength that is most used along the optical path in consideration or alternatively network-wide is selected and assigned. This method helps minimize wavelength fragmentation. The binning tables may have various granularities, and may be organized by reach, or by reach, wavelength spacing, the load on the respective optical path, the fiber type, etc.
Owner:PROVENANCE ASSET GRP LLC

Method For Engineering Connections In A Dynamically Reconfigurable Photonic Switched Network

A method for engineering of a connection in a WDM photonic network with a plurality of flexibility sites connected by links comprises calculating a physical end-to-end route between a source node and a destination node and setting-up a communication path along this end-to-end route. An operational parameter of the communication path is continuously tested and compared with a test threshold. The path is declared established whenever the operational parameter is above the margin tolerance. The established path is continuously monitored by comparing the operational parameter with a maintenance threshold. A regenerator is switched into the path whenever the operational parameter is under the respective threshold, or another path is assigned to the respective connection. An adaptive channel power turn-on procedure provides for increasing gradually the power level of the transmitters in the path while measuring an error quantifier at the destination receiver until a preset error quantifier value is reached. As the connection ages, the power is increased so as to maintain the error quantifier at, or under the preset value. The path operation is controlled using a plurality of optical power / gain control loops, each for monitoring and controlling a group of optical devices, according to a set of loop rules.
Owner:ALCATEL LUCENT SAS

Method for engineering connections in a dynamically reconfigurable photonic switched network

A method for engineering of a connection in a WDM photonic network with a plurality of flexibility sites connected by links comprises calculating a physical end-to-end route between a source node and a destination node and setting-up a communication path along this end-to-end route. An operational parameter of the communication path is continuously tested and compared with a test threshold. The path is declared established whenever the operational parameter is above the margin tolerance. The established path is continuously monitored by comparing the operational parameter with a maintenance threshold. A regenerator is switched into the path whenever the operational parameter is under the respective threshold, or another path is assigned to the respective connection. An adaptive channel power turn-on procedure provides for increasing gradually the power level of the transmitters in the path while measuring an error quantifier at the destination receiver until a preset error quantifier value is reached. As the connection ages, the power is increased so as to maintain the error quantifier at, or under the preset value. The path operation is controlled using a plurality of optical power/gain control loops, each for monitoring and controlling a group of optical devices, according to a set of loop rules.
Owner:PROVENANCE ASSET GRP LLC +1

Dynamic Assignment Of Wavelengths In Agile Photonic Networks

In an automatically switched optical network, the wavelengths are assigned to optical path based on their intrinsic physical performance and on the current network operating parameters. The wavelength performance information is organized in binning tables, based primarily on the wavelength reach capabilities. A network topology database provides the distance between the nodes of the network, which is used to determine the length of the optical path. Other network operating parameters needed for wavelength selection are also available in this database. Once a bin corresponding to the path length is identified in the binning table, the wavelength for that path is selected based on length only, or based on the length and one or more additional parameters. The optical path performance is estimated for the selected wavelength, and the search continues if the estimated path performance is not satisfactory. Several available wavelengths are searched and of those, the wavelength that is most used along the optical path in consideration or alternatively network-wide is selected and assigned. This method helps minimize wavelength fragmentation. The binning tables may have various granularities, and may be organized by reach, or by reach, wavelength spacing, the load on the respective optical path, the fiber type, etc.
Owner:ALCATEL LUCENT SAS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products