Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

110results about "Ignition circuit layouts" patented technology

Control device for internal combustion engine

ActiveUS20140318488A1No effect on ignition operationsElectrical controlCombustion enginesElectricityExternal combustion engine
Provided is a control device for an internal combustion engine, employing a microprocessor to control a load other than an ignition device, the control device being provided to an internal combustion engine in which is installed a magnet generator that has a magneto coil for successively generating, in association with revolution of the internal combustion engine, a first half wave voltage, a second half wave voltage of different polarity than the first half wave voltage, and a third half wave voltage of identical polarity to the first half wave voltage; and the magnet generator employing the second half wave voltage to drive the ignition device. The device is provided with an electricity storage element which draws excess power from the output that is output by the magnet generator for the purpose of driving the ignition device, and which is charged by the first and second half wave voltages, as well as being charged by the second half wave voltage as well at times that the internal combustion engine is in the exhaust stroke, in order to supply power to the load and to the microprocessor. The power source circuit is constituted to use the energy stored in this electricity storage element to generate power source voltage for presentation to the microprocessor and to the load other than an ignition device.
Owner:MAHLE INT GMBH

Method and device for controlling ignition timing of ignition device for internal combustion engine

The invention simplifies the structure of a magneto generator and stabilizes the operation of an internal combustion engine at the time of start-up, thereby providing an ignition device simplified in structure and reduced in size and providing improved safety to the internal combustion engine. In an ignition device for a capacitive discharge internal combustion engine, an ignition timing signal is calculated with a cycle detection signal obtained at a timing at which a forward voltage portion of an output voltage from a generator coil has reached a cycle detection voltage for making continual ignition operations available, and a peak voltage detection signal and a start-up voltage detection signal are obtained in accordance with a delayed reverse voltage portion of the output voltage from the generator coil. In a preset normal region speed or less in which a load is coupled to the engine, an ignition signal is output immediately after the peak voltage detection signal has been generated. In a normal region speed or more, an ignition signal is output after the duration of the ignition timing signal from the point in time of output of the cycle detection signal. At the time of start-up, an ignition signal is output in response to the start-up voltage detection signal according to the cycle detection signal. This eliminates the need of a coil for generating a timing signal and provides a safe start-up operation.
Owner:IIDA ELECTRIC IND

Ignition device for internal combustion engine

The invention provides an ignition device for an internal combustion engine including an ignition circuit (6) which generates high voltage for ignition and an ignition position control portion (10) for controlling ignition position at the time of providing ignition signal (Si). In the invention, in order to avoid recoil at the time of the internal combustion engine starting, a signal generator (2) is provided that generates a first pulse signal (P1), and a second pulse signal (P2) and a third pulse signal (P3) having a different polarity from the first pulse signal (P1), and the ignition position control portion includes: start time ignition signal providing means (11) for providing an ignition signal to an ignition circuit when the signal generator (2) successively generates the pulse signals having the same polarity at the start of the engine; idling time ignition signal providing means (12) for providing an ignition signal to the ignition circuit in response to the second pulse signal (P2) when first ignition at the start is completed and a rotational speed is an idling rotational speed or less; and normal rotation time ignition signal providing means (13) for arithmetically operating an ignition position and providing an ignition signal to the ignition circuit at a crank angle position that matches the arithmetically operated ignition position when the rotational speed of the internal combustion engine exceeds the idling rotational speed.
Owner:KOKUSAN DENKI CO LTD

Ignition timing control method for internal combustion engine-use ignition device and ignition timing control device

The invention simplifies the structure of a magneto generator and stabilizes the operation of an internal combustion engine at the time of start-up, thereby providing an ignition device simplified in structure and reduced in size and providing improved safety to the internal combustion engine. In an ignition device for a capacitive discharge internal combustion engine, an ignition timing signal is calculated with a cycle detection signal obtained at a timing at which a forward voltage portion of an output voltage from a generator coil has reached a cycle detection voltage for making continual ignition operations available, and a peak voltage detection signal and a start-up voltage detection signal are obtained in accordance with a delayed reverse voltage portion of the output voltage from the generator coil. In a preset normal region speed or less in which a load is coupled to the engine, an ignition signal is output immediately after the peak voltage detection signal has been generated. In a normal region speed or more, an ignition signal is output after the duration of the ignition timing signal from the point in time of output of the cycle detection signal. At the time of start-up, an ignition signal is output in response to the start-up voltage detection signal according to the cycle detection signal. This eliminates the need of a coil for generating a timing signal and provides a safe start-up operation.
Owner:IIDA ELECTRIC IND

Electronic control fuel oil injection type outboard engine

The present invention is an electronically controlled fuel injection type outboard engine, which includes a lifting mechanism driven by a hydraulic system and an ECU control module; the engine is equipped with a supporting fuel system; the hydraulic system and the fuel system are both integrated and controlled by the electronic control system; the fuel system Including the sequential connection of fuel pipes: fuel tank, fuel pump, high-pressure fuel pump, electronic fuel injector; electronic fuel injector is installed on the engine; there is also a filter cup on the fuel pipe between the fuel tank and the fuel pump; The three electronic fuel injectors are connected in series by the fuel common rail; the electric control system includes at least a battery, a magneto, a spark plug, and multiple sensor control elements; there are multiple spark plugs on the engine; the spark plugs are electrically connected by a high-voltage package; the high-voltage package and The starter relay is connected; the output terminal of the battery is connected to the starter relay by the line; the high voltage package is also connected to the magneto by the rectifier voltage regulator; the magneto is also connected to the battery; the battery is connected to the starter motor through the power line; The flywheel shaft of the engine is connected.
Owner:SUZHOU BAISHENG POWER MACHINE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products