Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

162results about How to "Reduce contention" patented technology

Access method for periodic contention-free sessions

An access method for periodic contention-free sessions (PCFS) reduces interference between overlapping first and second wireless LAN cells contending for the same medium. Each cell includes a respective plurality of member stations and an access point (AP) station. The access method for periodic contention-free sessions (PCFS) includes a fixed cycle time that reduces conflicts with PCFS from other cells. The PCFS from several cells are repeated in cycles of cycle period (CP), which is the contention-free period (CFP) of an access point times a factor that is a function of the number of overlapping cells. Periodic contention-free sessions (PCFSs) are generated, one from each overlapping cell. PCFS transmission attempts occur at the fixed specified time spacing following the start of the previous cycle. Each active AP sets a timer at CP and a PCFS is initiated when the timer expires. The timer is then reset to CP and this starts a new cycle. Contention transmissions are attempted by stations based on their assigned priority. If a channel is busy at the designated start time for transmitting a PCFS, the PCFS is shortened by the time lost. Interleaving PCFSs and CFSs reduces conflicts with CFSs from other cells. To lessen the contention between APs of different cells, each station's Network Allocation Vector (NAV) and Inter-BSS Network Allocation Vector (IBNAV) is updated by an increased value of the next CFS length, the increment being the inter-BSS contention period (IBCP). APs will attempt to access the channel during the IBCP only for transmitting a PCFS, while they will wait for the NAV and IBNAV expirations before attempting to transmit a CFS. Interleaving PCFSs and CFSs also enables maintaining quality of service (QoS).
Owner:AT&T INTPROP II L P

Method and apparatus for optimization of channel capacity in multi-line communication systems using spectrum management techniques

The present invention advantageously provides a method and apparatus for optimization of channel capacity in multi-line multi-tone communications such as X-DSL among subscriber lines which are bundled with one another. In an embodiment of the invention an apparatus for optimizing channel capacity of multi-tone communications effected by opposing sets of modems coupled to one another by a plurality of subscriber lines is disclosed. The apparatus includes a spectrum manager coupled to at least one of the opposing sets of modems. The spectrum manager includes: a profiler, a demand module and an optimizer. The profiler obtains from the at least one of the opposing sets of modems the spectral characteristics of each of the plurality of subscriber lines. The demand module determines for each of the plurality of subscriber lines the subscriber demand profile. The optimizer defines target parameters for at least one of bit loading, and power spectral density (PSD) for selected tones of the multi-tone communications based on the spectral characteristics from the profile module and the demand profiles from the demand module and downloads the target parameters to the at least one of the opposing sets of modems.
Owner:IKANOS COMMUNICATIONS

Data migration with reduced contention and increased speed

Methods and apparatus are provided for managing data in a hierarchal storage subsystem. A plurality of volumes is designated as a storage group for Level 0 storage; a high threshold is established for the storage group; space is allocated for a data set to a volume of the storage group, storing the data set to the volume; the high threshold is compared with a total amount of space consumed by all data sets stored to volumes in the storage group; and data sets are migrated from the storage group to a Level 1 storage if the high threshold is less than or equal to the total amount of space used by all of the data sets stored to volumes in the storage group. Optionally, high threshold are assigned to each storage group and, when the space used in a storage group reaches or exceeds the high threshold, migration of data will begin from volumes in the storage group, beginning with the volume having the least free space. Thus, contention between migration and space allocation is reduced. Also optionally, when a volume is selected for migration, a flag is set which prevents space in the volume from being allocated to new data sets. Upon completion of the migration, the flag is cleared and allocation is allowed. Thus, contention between migration and space allocation is avoided.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products