Provided are a high-power ball grid array (BGA) and a method for manufacturing the high-power BGA. The high-power BGA includes a printed circuit board which has a through hole at its center, connection pads which are formed on the bottom of the printed circuit board, matrix solder balls which surround the through hole and are adjacent to the connection pads on the bottom of the printed circuit board, a heat spreader which is formed on the top surface of the printed circuit board and includes an insulating layer of a high thermal conductivity, a semiconductor chip which is mounted downwardly on the bottom surface of the heat spreader, within the through hole, and includes a plurality of pads for bonding via gold wires with the connection pad, and a passive film which fills the through hole and is formed at the bottom of the semiconductor chip. By interposing a ceramic between the semiconductor chip and the heat spreader, for insulating, the generation of charges between the semiconductor chip and the heat spreader can be sharply reduced, and defects such as ESD (electrostatic discharge) can be reduced when testing for the ESD and mounting the package.