Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

246 results about "Functional electrical stimulation" patented technology

Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES).

Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith

ActiveUS7328068B2Undesirable side effects of sacral nerve stimulation may be avoided or minimizedUndesirable side-effectDigestive electrodesGenital electrodesDiseaseProstatalgia
Described are implantable devices and methods for treating various disorders of the pelvic floor by means of electrical stimulation of the pudendal or other nerves, and optional means for delivering drugs in association therewith. A method of precisely positioning and implanting a medical electrical lead so as to provide optimal stimulation of the pudendal nerve or a portion thereof is also described. Placement of a stimulation lead next to or on the pudendal nerve may be performed using conventional prior art techniques through gross anatomical positioning, but usually does not result in truly optimal lead placement. One method of the present invention utilizes neurophysiological monitoring to assess the evoked responses of the pudendal nerve, and thereby provide a method for determining the optimal stimulation site. Additionally, one or more electrical stimulation signals are applied, and optionally one or more drugs are infused, injected or otherwise administered, to appropriate portions of a patient's pelvic floor and pudendal nerve or portions thereof in an amount and manner effective to treat a number of disorders, including, but not limited to, urinary and / or fecal voiding dysfunctions such as constipation, incontinence disorders such as urge frequency and urinary retention disorders, sexual dysfunctions such as orgasmic and erectile dysfunction, pelvic pain, prostatitis, prostatalgia and prostatodynia.
Owner:MEDTRONIC INC

Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudenal and associated nerves, and the optional delivery of drugs in association therewith

Described are implantable devices and methods for treating various disorders of the pelvic floor by means of electrical stimulation of the pudendal or other nerves, and optional means for delivering drugs in association therewith. A method of precisely positioning and implanting a medical electrical lead so as to provide optimal stimulation of the pudendal nerve or a portion thereof is also described. Placement of a stimulation lead next to or on the pudendal nerve may be performed using conventional prior art techniques through gross anatomical positioning, but usually does not result in truly optimal lead placement. One method of the present invention utilizes neurophysiological monitoring to assess the evoked responses of the pudendal nerve, and thereby provide a method for determining the optimal stimulation site. Additionally, one or more electrical stimulation signals are applied, and optionally one or more drugs are infused, injected or otherwise administered, to appropriate portions of a patient's pelvic floor and pudendal nerve or portions thereof in an amount and manner effective to treat a number of disorders, including, but not limited to, urinary and/or fecal voiding dysfunctions such as constipation, incontinence disorders such as urge frequency and urinary retention disorders, sexual dysfunctions such as orgasmic and erectile dysfunction, pelvic pain, prostatitis, prostatalgia and prostatodynia.
Owner:MEDTRONIC INC

Intramuscular stimulation therapy using surface-applied localized electrical stimulation

A modality of electrical twitch obtaining intramuscular stimulation pain relief therapy utilizes a surface probe with a conductive tip to apply surface electrical stimulation of relatively high voltage locally and focally to muscle motor points and regions of adjacent motor end plate zones. The surface-applied electrical stimulation through intact skin readily facilitates the elicitation of forceful twitch responses from muscle fibers associated with the stimulated motor points and motor end plate zones, without requiring needle penetration into the patient's flesh. Rapid movement between multiple treatment sites is possible allowing treatment of a larger number of muscle motor point areas in afflicted muscles and more muscles to be treated in a single treatment session. The therapeutic effect of the twitches increases with the force and number of the twitches. In addition, since physical insertion of the needle electrode is totally unnecessary, patients experience little to no pain during and after the procedure, and the risk of repetitive stress injury to the therapist is reduced. Additionally, significantly less skill is required to effectively elicit pain relieving twitch responses, thus facilitating training of medical and para-medical personnel to perform the procedure.
Owner:JUS JAS

Sitting and lying type lower limb rehabilitation robot

The invention discloses a sitting and lying type lower limb rehabilitation robot, which can respectively carry out a passive training, an assisted training or an active training according to the damage degree or the rehabilitation stage of a patient. The robot comprises a seat, a mechanical arm, a main industrial control box, a man-machine interaction interface, an electrical stimulation handheld switch, an electrical stimulation electrode plate, an electromyographic signal acquisition electrode plate, a functional electrical stimulation instrument and an electromyographic signal acquisition industrial control box. During the passive training, the lower limb of the patient is trained according to a set movement locus; during the assisted training, the main muscle group of the lower limb of the patient is applied with electrical stimulation pulse; according to the movement locus of a tail end, the electrical stimulation pulse is subjected to sequential control to finish the assisted training; during the active training, the electromyographic signal of the corresponding muscle of the patient is collected; and according to different control algorithms, the patient drives robot to realize the active training. According to the sitting and lying type lower limb rehabilitation robot disclosed by the invention, the traditional physical therapy, occupational therapy and kinesitherapy are organically combined, so that the patient rehabilitation effect can be effectively improved, and the desire of the patient to actively participate is enhanced.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Mirror movement neuromodulation system

The invention discloses a mirror movement neuromodulation system, which comprises a plurality of lead biological signal amplifiers, a microcomputer controller, a plurality of lead functional electric stimulators and a micro-current direct-current constant-current stimulator. The principle that functional electric stimulation and transcranial direct-current electric stimulation techniques and mirror movement neurons participate in movement control is applied comprehensively, the biological signal amplifiers, the functional electric stimulators for simulating integrated electromyography envelope signal control, and the micro-current direct-current constant-current stimulator are integrated through the microcomputer controller, myoelectric activity envelope signals are generated by processing myoelectric signals of a plurality of muscle groups which move functionally by using an uninjured side limb, and the plurality of functional electric stimulators are modulated and controlled, so that the same mirror action is generated by the plurality of muscle groups of an injured limb on an opposite side according to uninjured side myoelectric information, brain functional regulation and reconstruction are realized, the plasticity of neuronal synapsis and the recovery of neurological functions are facilitated, and the treatment effect of sports rehabilitation is achieved.
Owner:SHENZHEN YINGZHI TECH

Noninvasive electrical stimulation system for standing and walking by paraplegic patients

The present invention is concerned with functional electrical stimulation (FES) of paraplegics having spinal cord injuries (SCI), especially for the purpose of walking, where stimulation is applied to motor neurons below the level of the SCI. Specifically, the invention is concerned with FES in closed-loop where closed loop operation is provided by wireless feedback by EMG signals recorded via noninvasive surface EMG electrodes. No wire connections are required between the EMG electrodes and a signal processor (SP) for providing the feedback signal to the SP. Also, no wire feedback is required to send timing information from the stimulation signal generator to blocking circuits, in cases where such circuits are required to protect the wireless transmitters of the feedback information from being damaged by the stimulation pulses. Wireless operation is facilitated by miniature chips (receivers and transmitters), such as used in the Bluetooth technology. Hence, the paraplegic users are not burdened with any wires that are otherwise needed for closed-loop operation and with the need to connect them between the patient's back, legs, and a pocket-borne control box. Furthermore, closed loop operation frees the patients from the need to manually adjust stimulation levels with progression of muscle fatigue.The present invention allows the achieving closed-loop FES without requiring the sharing the same electrode for both stimulation and EMG recording and which requires complex control and non-standard electrodes. The avoidance of electrode-sharing further allows using regular and widely available stimulation electrodes and regular surface EMG electrodes, such as described in Graupe and Kohn: “Functional Electrical Stimulation for Ambulation by Paraplegics”, 1994.In certain realizations of the present invention, the blocking circuit discussed above requires no input from the stimulus signal generator, while such inputs are essential in any electrode-sharing design since pulse level is highest at the stimulation site. Hence, also no wireless receiver is required next to the EMG electrodes and no wireless transmitter is required next to the stimulus signal generator.In certain other realizations, blocking circuits are not required at all.
Owner:GRAUPE DANIEL

Functional electrical stimulation device and system, and use thereof

Disclosed herein is a functional electrical stimulation (FES) device and system. In one embodiment, sequential bipolar pulse stimulation may be provided to an area of a living body via one or more electrode leads applied to the area via a FES device comprising a current pulse generating circuit comprising output nodes for operative coupling to the one or more electrode leads, and configured for operative coupling to a voltage supply. The current pulse generating circuit generally comprises positive and negative stimulation paths drawing from the voltage supply to respectively apply positive and negative currents through the area via the one or more electrode leads. In one example, the stimulation paths comprise respective capacitive elements, a capacitance ratio of which dictating, at least in part, an amplitude ratio of the positive and negative currents, wherein periodic alternative activation of the stimulation paths provides the sequential bipolar pulse stimulation. In another example, each path comprises a respective charging element and a respective activation switch, wherein each respective charging element is charged by the voltage supply and discharged upon activation of the respective activation switch to generate positive and negative current pulses respectively, such that a pulse rise time of the positive and negative current pulses is predominantly dictated by a switching speed of each respective switch. Systems and uses for these devices, and FES in general, are also described.
Owner:UNIV HEALTH NETWORK

Rehabilitation system for disabled persons based on virtual reality

The invention discloses a rehabilitation system for disabled persons based on virtual reality, which comprises a functional electrical simulation module, a motion capture module and a virtual reality module; wherein the motion capture module is respectively connected with the functional electrical simulation module and the virtual reality module. By stimulating the nerves and muscles of human body and simultaneously recording the limb movement after stimulation, the rehabilitation system for disabled persons based on virtual reality adjusts a functional electrical stimulation parameter through closed loop control, and presents the movement to a user by utilizing a virtual reality technology. For the reconstruction of limb movement function, the closed loop control is a more natural optimal control method which realizes the stationarity of limb movement and better conforms to human movement characteristics. Real-time visual feedback can effectively promote the reconstruction of limb movement function and improve the efficiency of rehabilitation training. The three-dimensional interactive immersing environment of the virtual reality can provide multi-mode feedback information such as visual feedback information, acoustic feedback information and the like of movement process and movement effect for patients, arouse and maintain the motivation of the patients for repetitive practice.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products