The object is to develop a bacterium capable of fermenting glucose, mannose and xylose simultaneously, which can ferment a saccharified solution of a cellulose-type or lignocellulose-type biomass resource to produce ethanol, and to construct an energy-saving high-efficiency bioethanol conversion process. Thus, disclosed is Zymomonas mobilis bacterium which is prepared by integrating a gene encoding a phosphomannose isomerase derived from Escharichia coli into a levansucrase gene located on the chromosome by the double cross-over by means of a homologous recombsination method, and then introducing recombinant DNA prepared by binding a DNA fragment containing genes encoding a xylose isomerase, a xylulokinase, a transaldolase and a transketolase, respectively, all derived from Escherichia coli to a vector. Also disclosed is a method for producing ethanol by continuously fermenting a saccharified solution of a cellulose-type biomass resource in a system on which the Zymomonas mobilis bacterium is immobilized.