Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

518results about "Counting chain synchronous pulse counters" patented technology

Shift registrer and driving method thereof

A shift register having a plurality of stages for shifting a start pulse and outputting a shifted start pulse to a next stage, each of the plurality of stages includes a pull-up transistor controlled by a first node to apply a first clock signal to an output line, a first pull-down transistor controlled by a second node to apply a first driving voltage to the output line, a controller for controlling the first and second nodes, and a compensating capacitor connected between the first node and an input line of a second clock signal, the second clock signal being different from the first clock signal.
Owner:LG DISPLAY CO LTD

Shift register

A shift register for use with a liquid crystal display device includes a plurality of stages. A stage of the shift register includes a first controller, a second controller and an output buffer. The first controller charges and discharges a first node. The second controller charges and discharges a second node and a third node. The output buffer outputs a first output signal in response to the state of the first node and a second output signal in response to the state of the second and third nodes. The shift register may be adaptive to avoid a malfunction caused by a gate bias stress.
Owner:LG DISPLAY CO LTD

Shift register and method for driving the same

This invention relates to a shift register that is adaptive for preventing malfunction and damage, and a driving method thereof. A shift register having a plurality of stages which output an output signal through an output signal line by using any three of a first voltage supply source, a previous stage's output signal, a next stage's output signal, and first to fourth clock signals, includes a pull-up transistor to output the first clock signal through the output signal line in response to a logic value of a Q node; a pull-down transistor to supply a supply voltage from the first voltage supply source to the output signal line in response to a logic value of a Qb node; a Q node controller to control the logic value of the Q node in response to any one of the previous stage's output signal and the next stage's output signal; and a Qb node controller to control the logic value of the Qb node to alternate repeatedly between low and high by use of at least one of the second clock signal, the third clock signal and the logic value of the Q node when the output signal line is in a low state.
Owner:LG DISPLAY CO LTD

Delay lock loop circuit useful in a synchronous system and associated methods

A method and circuitry for a delay lock loop useful in synchronizing the accessing of a memory array with a system clock is disclosed. In a preferred embodiment, the delay lock loop includes a variable delay element. The delay of the variable delay element is initially set to a minimum delay value. The system clock is then frequency divided and sent to the variable delay element, the output of which will ultimately be used to access the memory array in a synchronized manner with the system clock. The frequency divided clock and the output of the variable delay element are input to a phase detector, which creates a control signal for adjusting the delay of the variable delay element. After the signals are determined to be locked by the phase detector, an undivided clock signal version of the clock signal is sent to the variable delay element, and a frequency divided version of the output of the variable delay element is sent to the phase detector in lieu of the previous output of the variable delay element.
Owner:ROUND ROCK RES LLC

Shift register that suppresses operation failure due to transistor threshold variations, and liquid crystal driving circuit including the shift register

A shift register having a plurality of stages connected in cascade shifts an output signal by a plurality of clocks having different phases. Each of the stage includes an input diode to which a signal is input from a preceding stage, a capacitor for holding charge having a voltage level of the input signal, a first transistor that is turned on or off by the held voltage level to output an output signal to a following stage in synchronization with a clock signal, and a second transistor connected between the input diode and an output terminal. A control electrode of the second transistor is connected to the input diode in the following stage. The second transistor has a clamping function for discharging the accumulated charge and turning off the first transistor when the clock signal is phase-shifted.
Owner:ONANOVICH GROUP

High speed frequency divider circuit

A high frequency divider circuit for producing output signals of half the frequency of an input clock signal includes two identical circuit sections, each producing an output signal and its complement. The circuit sections are connected to each other so that the output signals of one circuit section serve as input signals to the other circuit section. Each circuit section contains a load transistor which is controlled by one of the clock signal and the clock signal complement, and a switch transistor which is controlled by the other of the clock signal and the clock signal complement. The inventive circuit exhibits a reduced RC time constant for each circuit section and an increased output signal swing between the output signals and their respective complements, as contrasted with prior art frequency dividers, thereby increasing the overall circuit response time and its ability to operate at high frequencies.
Owner:LUCENT TECH INC

Shift register and electronic apparatus

Each of stages RS(1), RS(2), . . . of a shift register is constituted by six TFTs. A ratio of a channel width and a channel length (W / L) of each of these TFTs 1 to 6 is set in accordance with a transistor characteristic of each TFT in such a manner that the shift register normally operates for a long time even at a high temperature.
Owner:ORTUS TECH

Database method and system for conducting integrated dispatching

A technique for integrating a pre-existing business system with a fleet management system. The pre-existing business system includes, for example, an accounting system, a warehousing system, a dock management system, a yard management system. These fleet management system uses, for example, a combination of a raster map and vector data to provide an easy-to-read display for managing objects or articles, e.g., vehicle, container. The method uses a host gateway to provide a TCP / IP or like interface between the various systems.
Owner:MOBILE INFORMATION SYST

Gated ring oscillator for a time-to-digital converter with shaped quantization noise

Described is a compact, lower power gated ring oscillator time-to-digital converter that achieves first order noise shaping of quantization noise using a digital implementation. The gated ring oscillator time-to-digital converter includes a plurality of delay stages configured to enable propagation of a transitioning signal through the delay stages during an enabled state and configured to inhibit propagation of the transitioning signal through the delay stages during a disabled state. Delay stages are interconnected to allow sustained transitions to propagate through the delay stages during the enabled state and to preserve a state of the gated ring oscillator time-to-digital converter during the disabled state. The state represents a time resolution that is finer than the delay of at least one of the delay stages. A measurement module determines the number of transitions of the delay stages.
Owner:MASSACHUSETTS INST OF TECH

Counter circuit, AD conversion method, AD converter, semiconductor device for detecting distribution of physical quantities, and electronic apparatus

An asynchronous counter that is capable of switching count mode includes flip-flops, and three-input single-output tri-value switches respectively provided between the adjacent pairs of the flip-flops. The tri-value switches switch among three values, namely, non-inverting outputs and inverting outputs of the flip-flops and a power supply level. Each of the tri-value switches switch among the three input signals according to two-bit control signals, and input a selected signal to a clock terminal of a subsequent flip-flop. When count mode is switched according to the control signals, a count value immediately before the mode switching is set as an initial value, and counting after the mode switching is started from the initial value.
Owner:SONY CORP

Imaging device

An imaging device includes a first electrode for generating an electric field storing signal charges, a charge multiplication section for multiplying the stored signal charges, a second electrode for generating the electric field in the charge multiplication section, a voltage conversion portion for converting the signal charges into a voltage, a third electrode for transferring the signal charges to the voltage conversion portion, provided between the first electrode and the voltage conversion portion, wherein the second electrode is provided on a side opposite to the third electrode and the voltage conversion portion with respect to the first electrode.
Owner:SANYO ELECTRIC CO LTD

Gated ring oscillator for a time-to-digital converter with shaped quantization noise

Described is a compact, lower power gated ring oscillator time-to-digital converter that achieves first order noise shaping of quantization noise using a digital implementation. The gated ring oscillator time-to-digital converter includes a plurality of delay stages configured to enable propagation of a transitioning signal through the delay stages during an enabled state and configured to inhibit propagation of the transitioning signal through the delay stages during a disabled state. Delay stages are interconnected to allow sustained transitions to propagate through the delay stages during the enabled state and to preserve a state of the gated ring oscillator time-to-digital converter during the disabled state. The state represents a time resolution that is finer than the delay of at least one of the delay stages. A measurement module determines the number of transitions of the delay stages.
Owner:MASSACHUSETTS INST OF TECH

Shift register

A shift register minimizing bias stress applied to transistors is disclosed. A shift register including n stages outputting scan pluses that are sequentially delayed in a forward or reverse direction thereof, where n is positive integer and wherein each stage includes: a scan direction controller that provides a first or second voltage to a scan direction control node according to a first or second enable signal and controlling the forward or reverse direction output; a first node controller that controls a first node according to a voltage on the scan direction control node; a second node controller that controls a second node according to the voltage on the scan direction control node and a voltage on the first node; an output unit that outputs a clock signal as scan pulse according to voltages on the first and second nodes; a third node controller that provides one of the first and second voltages to a third node according to the first and second enable signals; a first discharge circuit unit that discharges the voltage on the first node according to voltages of the second and third nodes; and a second discharge circuit unit that discharges the voltage on the third node according to one of a third enable signal and a fourth enable signal.
Owner:LG DISPLAY CO LTD

Fractional frequency divider circuit and data transmission apparatus using the same

A fractional frequency divider circuit with a small circuit scale that outputs a clock with a duty ratio of 50%, and a data transmission apparatus comprising same. The fractional frequency divider circuit is constituted by multiple master-slave flip-flops, and comprises an integer frequency divider circuit that frequency-divides a clock signal with a frequency-division ratio of 1 / N(N is an integer), and a logic circuit into which multiple signals outputted from master stages and slave stages of the master-slave flip-flops are inputted and that outputs a signal with a duty ratio of 50% obtained by frequency-dividing the clock signal with a frequency-division ratio of 2 / N. The data transmission apparatus is constituted such that it is possible to switch over between a frequency-multiplied clock outputted by a PLL and a clock obtained by frequency-dividing the frequency-multiplied clock with the fractional frequency divider circuit for each channel.
Owner:RENESAS ELECTRONICS CORP

Exponential channelized timer

A multiprocessor switching device substantially implemented on a single CMOS integrated circuit is described in connection with a channelized timer for use in controlling the issuance of signals to the processor(s) or control logic (such as interrupts, descriptors, etc.) that that identify system-related functions for a plurality of channels. Using control registers to select an individual bit of a multi-bit counter, a timing interval pulse is provided for prompting signal generation that is otherwise subject to a minimum count requirement.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Circuits and methods of TAF-DPS vernier caliper for time-of-flight measurement

Circuits for measuring TOF between two electrical signals comprises 1) a slow TAF-DPS clock signal generator for generating a slow clock signal, a fast TAF-DPS clock signal generator for generating a fast clock signal, said slow TAF-DPS clock signal generator comprises a gated ring oscillator and a TAF-DPS frequency synthesizer, said fast TAF-DPS clock signal generator comprises a gated ring oscillator and a TAF-DPS frequency synthesizer; 2) a phase detector for receiving said slow and fast clock signals and detecting point-of-coincidence between said slow and fast clock signals; 3) a first digital counter driven by said slow clock signal for storing the number of slow clock cycles and a second digital counter driven by said fast clock signal for storing the number of fast clock cycles; 4) a calibrator for calibrating said gate ring oscillators; 5) a calculation block for calculating TOF measurement result. Methods of using a slow TAF-DPS clock generator and a fast TAF-DPS clock generator for measuring TOF between two electrical signals are also disclosed.
Owner:XIU LIMING

Shift register having fewer lines therein, and liquid crystal display having the same

A shift register has m stages which store one of two states, where m is an integer more than 1, each stage including clock input terminals at which n-phase clock signals are input, where n is an integer more than 1, and an input terminal, and an output terminal. The input terminal of one stage receives the signal delivered from an input terminal of the shift register or from the output terminal of the previous stage. The signal output at the output terminal of one stage is passed to the input terminal of the subsequent stage or to an output terminal of the shift register. Each stage receives an initial state level from one of the clock input terminals. The initial state level is used to initialize the state of each stage.
Owner:MIND FUSION LLC

Shift register apparatus and method thereof

A shift register apparatus and a method thereof are provided. The technique manner submitted by the present invention utilizes two NMOS transistors for pulling down the voltage level of the scan signals output by the shift registers within the shift register apparatus to the low level gate voltage, wherein one of the NMOS transistors is controlled by a control unit, and the other NMOS transistor is controlled by a clock signal or the inverted clock signal provided to the shift registers. Therefore, shifting amount of the threshold voltage of those NMOS transistors can trend to be flat, and the reliability of those NMOS transistors can be promoted. In addition, since only one control unit is needed to dispose in each shift register so that the layout area of whole shift register apparatus can be reduced, and the panel with narrow frame size also can be achieved by the present invention.
Owner:CHUNGHWA PICTURE TUBES LTD

CMD and CMD-carrying CCD device

This invention controls the signal amplification rate in a simple way with high precision in a CMD or CMD-carrying CCD device. CMD 12 has plural sections, such as M sections (U1-UM), each of which is a CMD unit U that can perform a charge multiplication operation, set in series. Each section of CMD unit Ui has plural (such as 4) electrodes G1, G2, G3, G4 set in a row via an insulating film, such as silicon oxide film 100, on a silicon insulating film. Among driving voltages P1, P2, P3, P4 applied on the electrodes G1, G2, G3 and G4, P1 and P2 are applied in the same cycle as the transfer clock, P4 for impact ionization is applied in intermittent cycles with respect to P1 and P2, and P3 is applied as a DC voltage at a prescribed level.
Owner:TEXAS INSTR INC

CMD and CMD-carrying CCD device

This invention controls the signal amplification rate in a simple way with high precision in a CMD or CMD-carrying CCD device. CMD 12 has plural sections, such as M sections (U1-UM), each of which is a CMD unit U that can perform a charge multiplication operation, set in series. Each section of CMD unit Ui has plural (such as 4) electrodes G1, G2, G3, G4 set in a row via an insulating film, such as silicon oxide film 100, on a silicon insulating film. Among driving voltages P1, P2, P3, P4 applied on the electrodes G1, G2, G3 and G4, P1 and P2 are applied in the same cycle as the transfer clock, P4 for impact ionization is applied in intermittent cycles with respect to P1 and P2, and P3 is applied as a DC voltage at a prescribed level.
Owner:TEXAS INSTR INC

Technique for creating extended bit timer on a time processing unit

A technique for implementing an extended bit timer with a time processing unit (TPU), without using the channel hardware of the TPU includes a number of steps. A timer of the TPU is periodically read to determine the value of the timer. A counter is incremented when rollover of the timer has occurred and a coherency flag is de-asserted after the timer transitions through a first count. The coherency flag is asserted after the value of the timer transitions through a third count and the value of the timer is combined with the value of the counter to provide a current count. When the coherency flag is asserted and the value of the timer is equal to or between the first and second counts, the current count is adjusted.
Owner:DELPHI TECH INC

Divide-by-X.5 circuit with frequency doubler and differential oscillator

A divide by X.5 circuit can be implemented as a divided by 1.5 circuit. A phase-locked loop (PLL) has a quadrature voltage-controlled oscillator (VCO) that generates four phases offset at 0, 90, 180, and 270 degrees. Differential signals from the VCO are converted to single-ended VCO clocks that drive four divide-by-3 circuits, each clocked by one of the four phases of the VCO clocks. Resets to the divide-by-3 circuits are staggered to activate each divide-by-3 circuit synchronously with its phase clock. Outputs from the divide-by-3 circuits are applied to a frequency doubler that generates the final clock that is 1.5 times slower than the VCO clocks. The final clock has a near 50%-50% duty cycle.
Owner:DIODES INC

Method for reducing dark current

A method for reducing dark current within an image sensor includes applying, at a first time period, a first set of voltages to the phases of gate electrodes of vertical shift registers sufficient to accumulate holes of the vertical shift register, beneath each gate electrode and applying, at a second time period, a second voltage to a first set of the gate electrodes while simultaneously applying a more positive voltage to a second set of gate electrodes, the second voltage being of sufficient potential so holes that were accumulated beneath the second set of gate electrodes during the first time are collected and stored beneath the first set of gate electrodes during the second time period. Moreover, the method applies, at a third time period, a third voltage to the second set of gate electrodes while simultaneously applying a more positive voltage to the first set of gate electrodes, such that the previously accumulated holes beneath the first set of gate electrodes are transferred beneath the second set of gate electrodes; and returns the first and second sets of gate electrode voltages to their levels at the first time period.
Owner:SEMICON COMPONENTS IND LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products