Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

370results about How to "Improve aberration" patented technology

Optical Imaging System for Pickup

ActiveUS20120188654A1Excellent aberration correctionExcellent transfer functionLensMobile phonePhysics
An optical imaging system for pickup, sequentially arranged from an object side to an image side, comprising: the first lens element with positive refractive power having a convex object-side surface, the second lens element with refractive power, the third lens element with refractive power, the fourth lens element with refractive power, the fifth lens element with refractive power; the sixth lens element made of plastic, the sixth lens with refractive power having a concave image-side surface with both being aspheric, and the image-side surface having at least one inflection point. By such arrangements, the optical imaging system for pickup satisfies conditions related to shorten the total length and to reduce the sensitivity for using in compact cameras and mobile phones with camera functionalities.
Owner:LARGAN PRECISION

Wide-viewing-angle imaging lens assembly

The present invention provides a wide-viewing-angle imaging lens assembly comprising, in order from an object side to an image side: a front lens group, a stop, and a rear lens group. The front lens group comprises, in order from the object side to the image side: a first lens element with negative refractive power having a concave image-side surface and a second lens element. The rear lens group comprises, in order from the object side to the image side: a third lens element with positive refractive power having a concave object-side surface and a convex image-side surface, a fourth lens element with positive refractive power having a convex object-side surface and a convex image-side surface, and a fifth lens element with negative refractive power having a concave object-side surface. Such an arrangement of optical elements can effectively enlarge the field of view of the wide-viewing-angle imaging lens assembly, reduce the sensitivity of the optical system, and obtain good image quality.
Owner:LARGAN PRECISION

Photographing optical lens assembly, image capturing unit and electronic device

A photographing optical lens assembly includes, in order from object side to image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element has positive refractive power. The second, third, fourth and fifth lens elements have refractive power. The sixth lens element with refractive power has an image-side surface being concave in a paraxial region, wherein an object-side surface and the image-side surface of the sixth lens element are both aspheric, and the image-side surface has at least one inflection point. The seventh lens element with refractive power has an image-side surface being concave in a paraxial region, wherein an object-side surface and the image-side surface of the seventh lens element are both aspheric, and the image-side surface has at least one inflection point.
Owner:LARGAN PRECISION

Imagery Optical System

ActiveUS20120154929A1Shorten in lengthColor correctionLensMobile telephonyPhysics
An imagery optical system, sequentially from an object side to an image side on an optical axis comprising: the first lens element with positive refractive power, the second lens element with positive refractive power, the third lens element, the fourth lens element, and the fifth lens element having at least one inflection point. Each of the five lens elements may be made of plastic and comes with bi-aspheric surfaces. The imagery optical system satisfies conditions related to shorten the total length and to reduce the sensitivity for use in compact cameras and mobile phones with a camera function.
Owner:LARGAN PRECISION

Imaging lens

An imaging lens in which a positive (refractive power) first lens group, positive second lens group, and negative third lens group are arranged in order from the object side to the image side. The first lens group includes a positive first lens having a convex object-side surface and a negative second lens having a concave image-side surface near the optical axis. The second lens group includes third and fourth lenses each having at least one aspheric surface. The third lens group includes a negative fifth lens having a concave object-side surface near the axis, a positive sixth lens having a convex image-side surface near the axis, and a negative seventh lens having a concave image-side surface near the axis. The lenses are not joined to each other and the seventh lens has an aspheric image-side surface whose shape changes from concave to convex as the distance from the axis increases.
Owner:TOKYO VISIONARY OPTICS CO LTD

Image pickup optical lens assembly

ActiveUS8179615B1Reduced overall optical lengthGood aberration correctionLensPhysicsCamera lens
An image pickup optical lens assembly, sequentially arranged from an object side to an image side along an optical axis, comprising: the first lens element with positive refractive power having a convex object-side surface, the second lens element with negative refractive power, the third lens element with refractive power, the fourth lens element with positive or negative refractive power having a concave object-side surface and a convex image-side surface with both being aspheric, and the fifth lens element with positive or negative refractive power having a convex object-side surface and a concave image-side surface with both being aspheric. Additionally, the image pickup optical lens assembly satisfies conditions related to the reduction of the total length and the sensitivity of the image pickup optical lens assembly for compact cameras and mobile phones with camera functionalities.
Owner:LARGAN PRECISION

Combined wavefront coding and amplitude contrast imaging systems

The present invention provides extended depth of field or focus to conventional Amplitude Contrast imaging systems. This is accomplished by including a Wavefront Coding mask in the system to apply phase variations to the wavefront transmitted by the Phase Object being imaged. The phase variations induced by the Wavefront Coding mask code the wavefront and cause the optical transfer function to remain essentially constant within some range away from the in-focus position. This provides a coded image at the detector. Post processing decodes this coded image, resulting in an in-focus image over an increased depth of field.
Owner:UNIV OF COLORADO THE REGENTS OF +1

Projection optical system, manufacturing method thereof, and projection exposure apparatus

A projection optical system forming an image of an object in a first plane onto a second plane, comprising, an optical element group including at least one refractive member and a plurality of reflective members, and a plurality of lens-barrel units holding the optical element group divided into a plurality of groupings, wherein the plurality of reflective members is all held by one lens-barrel unit of the plurality of lens-barrels units.
Owner:NIKON CORP

Image pickup optical lens assembly

ActiveUS8179614B1Good aberration correctionShorten in lengthLensCamera lensPhysics
An image pickup optical lens assembly, sequentially arranged from an object side to an image side along an optical axis, comprises the first lens element with positive refractive power having a convex object-side surface, the second lens element with negative refractive power having a concave object-side surface and a convex image-side surface, the third lens element with refractive power, the fourth lens element with positive refractive power having a concave object-side surface and a convex image-side surface, the fifth lens element with negative refractive power having a concave image-side surface with at least one inflection point, and a stop. Each of the five lens elements may be made of plastic with bi-aspherical surfaces. Additionally, the image pickup optical lens assembly satisfies conditions of shortening the total length and reducing the sensitivity for usage in compact cameras and mobile phones with camera functionalities.
Owner:LARGAN PRECISION

Aspheric multifocal diffractive ophthalmic lens

A multifocal ophthalmic lens includes a lens element having an anterior surface and a posterior surface, a refractive zone, or base surface having aspherically produced multifocal powers disposed on one of the anterior and posterior surfaces; and a near focus diffractive multifocal zone disposed on one of the anterior and posterior surfaces.
Owner:VISION ADVANCEMENT LLC

Optical image lens system

ActiveUS20130329306A1Suppressing field curvatureReduce system sensitivityLensSurface changePhysics
This invention provides an optical image lens system comprising: a positive first lens element having a convex object-side surface; a second lens element; a positive third lens element; a fourth lens element; a positive plastic fifth lens element having a convex object-side surface and a concave image-side surface, at least one of the object-side and image-side surfaces is aspheric; and a negative plastic sixth lens element having a concave image-side surface, at least one of the object-side and image-side surfaces is aspheric, wherein the shape of the image-side surface changes from concave at the paraxial region thereof to convex while away from the paraxial region thereof.
Owner:LARGAN PRECISION

Micromirror arry lens with optical surface profiles

A Micromirror Array Lens comprises a plurality of micromirrors arranged on a flat or a curved surface to reflect incident light. Each micromirror in the Micromirror Array Lens is configured to have at least one motion. The Micromirror Array Lens forms at least one optical surface profile reproducing free surfaces by using the motions of the micromirrors. The free surface can be any two or three-dimensional continuous or discrete reflective surface. The Micromirror Array Lens having the corresponding optical surface profile provides optical focusing properties substantially identical to those of the free surface. The Micromirror Array Lens can forms various optical elements such as a variable focal length lens, a fixed focal length lens, an array of optical switches, a beam steerer, a zone plate, a shutter, an iris, a multiple focal length lens, other multi-function optical elements, and so on.
Owner:STEREO DISPLAY

Image capturing lens assembly

ActiveUS8576497B2Favorable for enlarging field of viewEffective distributionLensCamera lensImage resolution
This invention provides an image capturing lens assembly in order from an object side to an image side comprising five lens elements with refractive power: a first lens element with negative refractive power having a convex object-side surface and a concave image-side surface, a second lens element with positive refractive power having a convex image-side surface, a third lens element with positive refractive power having a convex object-side surface, a fourth lens element with negative refractive power having a convex object-side surface and a concave image-side surface; and a fifth lens element with positive refractive power. By such arrangement, sufficient field of view is provided, and the aberration of the lens assembly is corrected for obtaining higher image resolution.
Owner:LARGAN PRECISION

Optical pick-up apparatus

An optical pickup apparatus for conducting recording and / or reproducing information of an optical information recording medium, comprises a light source; a converging optical system having an objective lens; and a photo-detector. The converging optical system comprises a plastic lens and a spherical aberration deviation correcting element to correct deviation of a spherical aberration of the converging optical system. A numerical aperture of the objective lens at an image-side is 0.65 or more.
Owner:KONICA CORP

Imaging lens

An imaging lens is provided and includes: in order from an object side of the imaging lens, a first lens having a convex surface on the object side and having a positive power; a second lens having a concave surface on the object side and having a negative power; a third lens having a positive power; and a fourth lens having a convex surface on the object side near a paraxial axis and having a meniscus shape. The imaging lens satisfies conditional expressions specified in the specification.
Owner:TIANJIN OFILM OPTO ELECTRONICS CO LTD

Image capturing lens system, image capturing apparatus and electronic device

An image capturing lens system includes, in order from an object side to an image side: a first lens element with positive refractive power having a convex object-side surface; a second lens element with negative refractive power; a third lens element having an object-side surface and an image-side surface which are both aspheric; a fourth lens element with negative refractive power having an object-side surface and an image-side surface which are both aspheric; a fifth lens element having an object-side surface and an image-side surface which are both aspheric; and a sixth lens element having a concave object-side surface and a convex image-side surface which are both aspheric. With such arrangements, the convergent capability is mainly contributed from the object side of the lens assembly for higher portability of the lens system. Additionally, the peripheral image curve can be prevented while correcting the chromatic aberration and the peripheral image focus.
Owner:LARGAN PRECISION

E-beam defect review system

The present invention relates to a defect review system, and / or particularly, to an apparatus and method of defect review sampling, review method and classification on a semiconductor wafer or a pattern lithography reticle during integrated circuit fabrication. These objects are achieved in comparing a reviewed image with a reference image pick-up through a smart sampling filter. A clustering computer system base on high speed network will provide data cache and save operation time and memory. A smart review sampling filter automatically relocate abnormal pattern or defects and classify the device location extracted from design database and / or from golden die image on the same substrate. The column of the present defect review system is comprised of the modified SORIL type objective lens. This column provides solution of improving throughput during sample review, material identification better image quality, and topography image of defect. One embodiment of the present invent adopts an optical auto focusing system to compromise micro height variation due wafer surface topography. And another embodiment adopts surface charge control system to regulate the charge accumulation due to electron irradiation during the review process.
Owner:ASML NETHERLANDS BV

Three-dimensional imaging system for pattern recognition

The present invention provides a real-time three-dimensional pattern recognition imaging system having a variable focal length, a wide depth of field, a high depth resolution, a fast acquisition time, a variable magnification, a variable optical axis for tracking, and capability of compensating various optical distortions and aberrations, which enables pattern recognition systems to be more accurate as well as more robust to environmental variation. The imaging system for pattern recognition comprises one or more camera system, each of which has at least one micromirror array lens(MMAL), a two-dimensional image senor, and an image processing unit. A MMAL has unique features including a variable focal length, a variable optical axis, and a variable magnification.
Owner:STEREO DISPLAY

Optical Imaging Lens Assembly

ActiveUS20120194920A1Excellent aberration correctionExcellent transfer functionLensCamera lensOptical axis
An optical imaging lens assembly, sequentially arranged from an object side to an image side along an optical axis, comprising: the first lens element with positive refractive power having a convex object-side surface, the second lens element with negative refractive power having a convex object-side surface and a concave image-side surface, the third lens element with positive refractive power having a convex image-side surface, the fourth lens element with refractive power having both optical surfaces being aspheric, the fifth lens element with refractive power having a concave image-side surface and both optical surfaces being aspheric, wherein a stop and an image sensor disposed on an image plane are also provided. By such arrangements, the image pickup optical system satisfies conditions related to shorten the total length and to reduce the sensitivity for use in compact cameras and mobile phones with camera functionalities.
Owner:LARGAN PRECISION

Image capturing assembly, imaging apparatus and electronic device

ActiveUS20180188496A1Enhancing aberration correctionImprove aberrationOptical elementsOphthalmologyImage capture
An image capturing assembly includes six lens elements, the six lens elements being, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element has positive refractive power. The fourth lens element with positive refractive power has an image-side surface being convex. The fifth lens element has an image-side surface being concave. The sixth lens element has an image-side surface being concave, wherein the image-side surface of the sixth lens element includes at least one inflection point.
Owner:LARGAN PRECISION

Laser differential confocal tomography focusing method and device

The present invention relates to a laser differential confocal tomography focusing method and device, and relates to the technical field of optical imaging and detection. The method uses a rear pupilto block half of a measurement beam, uses a spectroscopic differential confocal detection system to detect the unblocked measurement beam, and uses an absolute zero point of a differential confocal response curve to achieve high precision tomographic focusing. The method organically combines a laser differential confocal technique and a ray tracing technique to establish a ray tracing and compensation model to eliminate influence among each fixed focal surface parameters, and achieves fast trigger of focus through data near a linearly fitting absolute zero point. The method can obtain the differential confocal response curve by using only one detector, and realizes the tomographic focusing through the absolute zero point of the differential confocal response curve, greatly simplifies system structure, in the same time, avoids error introduced by adjustment inaccuracy, and greatly improves precision of focusing. The method will provide a new technical approach to the field of confocal imaging / detection.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Correction of presbyopia using adaptive optics and associated methods

Devices, systems, and methods measure, diagnose, and / or treat one or both eyes of a patient. Adaptive optics systems (such as those having a deformable mirror) may be configured to an aspherical or multi-spherical presbyopia-mitigating prescriptive shape to allow objective and / or subjective measurements of a candidate prescription. A plurality of viewing distances allow subjective and / or objective evaluations of performance using a light spot or a test viewing image. Measurements of aberrations at selected viewing conditions (including distances and / or brightness) with correlating pupil sizes may also be provided. Wavefront measurement systems and methods may help position and isolate the eye from ambient light.
Owner:AMO MFG USA INC

Imaging lens

ActiveUS20070070525A1Reduction of various aberrationHigh aberration performanceOptical elementsPhysicsConditional expression
An imaging lens is provided and includes: in order from an object side of the imaging lens, a first lens having a convex surface on the object side and having a positive power; a second lens having a concave surface on the object side and having a negative power; a third lens having a positive power; and a fourth lens having a convex surface on the object side near a paraxial axis and having a meniscus shape. The imaging lens satisfies conditional expressions specified in the specification.
Owner:TIANJIN OFILM OPTO ELECTRONICS CO LTD

Charged-particle beam apparatus equipped with aberration corrector

A charged-particle beam instrument with an aberration corrector which comprises four stages of electrostatic quadrupole elements, two stages of magnetic quadrupole elements for superimposing a magnetic potential distribution analogous to the electric potential distribution created by the two central quadrupole elements of the four stages of electrostatic quadrupole elements on this electric potential distribution, and four stages of electrostatic octopole elements for superimposing an electric octopole potential on the electric potential distribution created by the four stages of electrostatic quadrupole elements.
Owner:JEOL LTD

Optical imaging lens

The invention discloses an optical imaging lens. The optical imaging lens comprises a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens in order from an object side to an image side along an optical axis. The first lens and the fifth lens have positive power. The second lens, the third lens and the fourth lens have positive power or negative power. The object side of the first lens and the image side of the fifth lens are convex sides. The image side of the second lens, the object side of the sixth lens and the image side of the sixth lens are concave sides. According to the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens, f / EPD is less than or equal to 1.8.
Owner:ZHEJIANG SUNNY OPTICAL CO LTD

Image Pickup Optical Lens Assembly

An image pick-up optical lens assembly, sequentially arranged from an object side to an image side along an optical axis, comprises: a first lens element with a positive refractive power having a convex object-side surface, a second lens element with a negative refractive power, a third lens element with a positive refractive power, a meniscus fourth lens element with a positive refractive power having at least one aspherical optical surface, and a fifth lens element with a positive refractive power having at least one inflection point on the optical image-side surface. Additionally, the image pick-up optical lens assembly satisfies several particular conditions. The invention possesses features such as good aberration compensation, well-performed modulation transfer function and short total length of lens assembly applicable for compact cameras and mobile phones.
Owner:LARGAN PRECISION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products