Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

262 results about "Cell response" patented technology

Cellular response. The binding of chemical signals to their corresponding receptors induces events within the cell that ultimately change its behaviour. The nature of these intracellular events differs according to the type of receptor. Also, the same chemical signal can trigger different responses in different types of cell.

Method and apparatus for visual neural stimulation

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC / cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
Owner:SALK INST FOR BIOLOGICAL STUDIES +1

Method and Apparatus for Visual Neural Stimulation

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC / cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
Owner:SECOND SIGHT MEDICAL PRODS +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products