Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

496 results about "Contaminated air" patented technology

Exhaust and ventilation system for mountable type microwave oven

A mountable type microwave oven including a blower fan assembly installed at a rear-upper portion of a cabinet to cool a machine room and ventilate a cooking chamber. The microwave oven includes a cabinet mounted on a wall of a cooking space, or under a storage cabinet, and having a cooking chamber to cook food therein and a machine room to house a plurality of electrical components, which are isolated from each other, an exhaust path to exhaust contaminated air generated from a cooking appliance installed below the wall-mounted microwave oven, a cooling-ventilation path to cool the machine room and to ventilate the cooking chamber, and a blower fan assembly including a drive motor having a pair of shafts to generate a rotating force, an exhaust fan joined to one shaft of the drive motor to generate a suction force and a propulsive force to cause the contaminated air to flow along the exhaust path, and a cooling-ventilation fan joined to the other shaft of the drive motor to generate suction and propulsive forces to cause air to flow along the cooling-ventilation path. Since the cooling-ventilation fan performs cooling of the machine room and ventilation of the cooking chamber, there is no need to provide an additional blower fan. Thus, the number of components of the microwave oven is reduced, thereby reducing production costs and improving productivity.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and apparatus for filtering an air stream using an aqueous-froth together with nucleation

A method for urging contact between contaminants in an air stream and the wet surfaces of an aqueous-froth, and additional means of limiting the froth to a predetermined volume are provided. A wide spectrum of solution micro-droplet sizes (0.001 to 1000 micron) is introduced into a contaminated air stream. Micro-droplets suspended in the air stream remove contaminants by contact, collide and coalesce in the dynamics of the air stream and are removed by inertia. Smaller micro-droplets remain suspended in the air stream. The smallest micro-droplets evaporate, increasing the solution vapor pressure of the air stream. The humidified or saturated, contaminated air stream continuously expands the surface area of the solution reservoir exponentially into an aqueous froth of tiny bubbles. Airflow velocity drops in the micro-atmosphere inside each bubble of the froth. Contaminants and solution micro-droplets suspended in the air, inside the bubbles, settle out by the acceleration of gravity into the wet surfaces inside of each bubble. The froth is dewatered by condensation of the bubble walls, solution vapor, and micro-droplets, with trapped contaminants, onto the cold air, adjacent cold surfaces, and cold refrigerant coils. The liquid solution and contaminants drain from the refrigerant coils into the solution reservoir. Solution micro-droplets remaining in the air stream are drawn through a centrifugal blower / droplet separator and are thrown onto the blower housing to drain back into the solution reservoir. The air stream is passed through condensing refrigerant coils to reheat the air stream and reduce relative humidity. Variations including scaling, alternative methods of fogging, and additional applications are described.
Owner:IND CLIMATE SOLUTIONS INC

Diffusive plasma air treatment and material processing

The Diffusive Plasma is for effective treatment of contaminated air and material processing. Air is purified and disinfected by passing through the diffusive plasma device which includes a reactor or a plurality of reactors arranged in parallel or series and is energized by a high voltage alternating current power supply. The diffuser, being electrically isolated, provides extra nucleation sites to initiate discharges. It serves to improve the generation of uniform and consistent plasma and to reduce the variation of discharge properties among the reactors. The addition of a diffuser, thereby, enhances the overall effectiveness of decomposing chemicals and destroying microbes to achieve high air treatment and material processing performance. The diffuser can be made of suitable filtering materials to additionally serve as a filter. By incorporating suitable catalytic materials with the diffuser, the reactor becomes a catalytic plasma reactor wherein the plasma environment provides enhanced catalytic functions. Effective plasma power deposition may be obtained by controlling the amplitude, waveform period and shape of the voltage applied to the electrodes of the reactor and hence the operation of the reactors with plasma discharged of selected conditions for optimizing the treatment and processing efficiency while minimizing the generation of unwanted bi-product gases. The present invention also relates to a method for effective air treatment and material processing.
Owner:ALPHATECH INT

Method and apparatus for filtering an air stream using an aqueous-froth together with nucleation

A method for urging contact between contaminants in an air stream and the wet surfaces of an aqueous-froth, and additional means of limiting the froth to a predetermined volume are provided. A wide spectrum of solution micro-droplet sizes (0.001 to 1000 micron) is introduced into a contaminated air stream. Micro-droplets suspended in the air stream remove contaminants by contact, collide and coalesce in the dynamics of the air stream and are removed by inertia. Smaller micro-droplets remain suspended in the air stream. The smallest micro-droplets evaporate, increasing the solution vapor pressure of the air stream. The humidified or saturated, contaminated air stream continuously expands the surface area of the solution reservoir exponentially into an aqueous froth of tiny bubbles. Airflow velocity drops in the micro-atmosphere inside each bubble of the froth. Contaminants and solution micro-droplets suspended in the air, inside the bubbles, settle out by the acceleration of gravity into the wet surfaces inside of each bubble. The froth is dewatered by condensation of the bubble walls, solution vapor, and micro-droplets, with trapped contaminants, onto the cold air, adjacent cold surfaces, and cold refrigerant coils. The liquid solution and contaminants drain from the refrigerant coils into the solution reservoir. Solution micro-droplets remaining in the air stream are drawn through a centrifugal blower/droplet separator and are thrown onto the blower housing to drain back into the solution reservoir. The air stream is passed through condensing refrigerant coils to reheat the air stream and reduce relative humidity. Variations including scaling, alternative methods of fogging, and additional applications are described.
Owner:IND CLIMATE SOLUTIONS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products