Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

776 results about "Nanogenerator" patented technology

A Nanogenerator is a type of technology that converts mechanical/thermal energy as produced by small-scale physical change into electricity. A Nanogenerator has three typical approaches: piezoelectric, triboelectric, and pyroelectric nanogenerators. Both the piezoelectric and triboelectric nanogenerators can convert mechanical energy into electricity. However, pyroelectric nanogenerators can be used to harvest thermal energy from a time-dependent temperature fluctuation.

Nano generator, nano generator set and self-powered system comprising nano generator or nano generator set

The invention provides a nano generator, a nano generator set and a self-powered system comprising the nano generator or the nano generator set. The nano generator comprises a supporting substrate, and upper and lower electrodes which are arranged at two sides of upper and lower surfaces of the supporting substrate by glue, wherein each electrode respectively comprises a zinc oxide nanowire array layer, a macromolecular insulating layer and a conductive thin film; the zinc oxide nanowire array layers vertically grow on the supporting substrate; the macromolecular insulating layers are coated on the zinc oxide nanowire array layers; the conductive thin films are arranged on the macromolecular insulating layers; and the conductive thin films form output electrodes of voltage and current of the nano generator. The self-powered system can obtain energy from very small force in an environment through utilizing the nano generator and can store most of the energy when a sensor is at a standby mode; the collected energy is used for triggering the sensor under an active mode to rapidly process and transmit data; and therefore, the self-powered system has huge potentials of application on the aspects of radio biological sensing, environment/infrastructure monitoring, sensor networks, individual electronic products, even national security.
Owner:NEWNAGY TANGSHAN

Friction-nanogenerator-based molecular sensor

The invention provides a friction-nanogenerator-based molecular sensor. The sensor comprises a first conducting element, a first friction layer, a second conducting element, a second friction layer, a modified layer and an elastic connecting component, wherein the first friction layer is placed on the lower surface of the first conducting element in a contact mode, the second friction layer is placed on the upper surface of the second conducting element in the contact mode, and the modified layer is combined with the upper surface of the second friction layer; by the elastic connecting component, the lower surface of the first friction layer is opposite to the upper surface of the second friction layer, and a certain distance is respectively kept between the lower surface of the first friction layer and the upper surface of the second friction layer; the lower surface of the first friction layer is at least partially in contact with the upper surfaces of the second friction layer under the action of external force, and the distance respectively between the lower surface of the first friction layer and the upper surfaces of the second friction layer can be restored under the action of the elastic connecting component when external force is removed, and simultaneously, electrical signals are outputted outwards through the first conducting element and the second conducting element; the electrical signals can be changed after the modified layer is combined with a target material to be detected.
Owner:BEIJING INST OF NANOENERGY & NANOSYST

Preparation method of composite nanometer piezoelectric generator

A composite nanometer piezoelectric generator based on an organic piezoelectric material and piezoelectric ceramic particles belongs to the field of nanometer generator preparation. The invention aims to provide and build up a nanometer generator film preparation method with the characteristics of quick preparation, uniform particles, low cost and high output and is characterized in that nanometer (or submicron) piezoelectric particles with high voltage coefficients are good in piezoelectric performance, the organic piezoelectric material as the base body is good in piezoelectric performance and the piezoelectric particles can also be uniformly dispersed in the organic piezoelectric material due to the good viscosity of the solution of the organic piezoelectric material, meanwhile, the piezoelectric particles are also good in mechanical performance; through the combination of the piezoelectric performance and the mechanical performance of the nanometer piezoelectric particles, flexible piezoelectric films with uniformly distributed particles can be prepared and the high output nanometer piezoelectric generator can be made through the high voltage polarization of the films. According to the invention, the characteristics of simple structure, low cost, quick preparation, good flexibility and high output and can be realized, and the composite nanometer piezoelectric generator can be applied to nanometer electricity generation field, force transducers and electric transducers and to drive LED and the like, as a result, the nanometer generator is excellent in application value.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method of zinc-oxide nanorod array film

InactiveCN103397382AImprove UV Luminescence PerformanceHigh UV Luminescence PerformancePolycrystalline material growthAfter-treatment detailsNanogeneratorHexamethylenetetramine
The invention belongs to the technical field of semiconductor film preparation, and particularly relates to a preparation method of a zinc-oxide nanorod array film. The technical scheme adopted by the invention is as follows: the preparation method comprises the following steps of: (1) on the basis of adopting height (001)-oriented ZnO as a seed layer, putting the ZnO seed layer into an aqueous solution of zinc nitrate (Zn(NO3)2), polyethyleneimine (PEI) and hexamethylenetetramine (HMT) for epitaxial growth to obtain a (001) preferred-orientation ultralong ZnO nanorod array film; (2) carrying out fast annealing treatment on the film, and improving the photoluminescence performance of the ZnO array film. The technology has the advantages that the continuous growth of the ZnO nanorod at the temperature higher than 100 DEG C can be realized; due to the high-temperature growth condition, the crystallization quality of the nanorod is improved, the internal defects are obviously reduced; the zinc-oxide nanorod array film has excellent photoelectric performance, and is more conductive to being applied in photoelectric devices such as dye-sensitized solar batteries, ultraviolet detectors, field-effect transistors, light-emitting diodes and nanogenerators.
Owner:UNIV OF JINAN

Method for manufacturing high-electrical-property nano generator based on piezoelectric-frictional effect

The invention discloses a method for manufacturing a high-electrical-property nano generator based on a piezoelectric-frictional effect. The small-area high-output-voltage nano generator is manufactured on the basis of the piezoelectric effect and the frictional effect. According to the method, CNT particles and piezoelectric particles in a certain proportion are mixed into liquid PDMS to be manufactured into a composite film, a micro-nano concave-convex structure with rules is manufactured on the surface of the composite film through a micro-processing method, finally electric polarization is carried out on the composite film, and an electrode is arranged in a clamping mode. The method combines the advantages of piezoelectricity and friction, and the manufactured piezoelectric-frictional nano generator with the small area, high sensitivity and high voltage output is low in manufacturing cost and simple in process, has good durability and workability, enables large-scale production and application to be carried out conveniently, and can be easily blended in the design of other products. Self-powered and self-driven equipment is provided for personnel electronic products, environmental monitoring, medical science and the like, and huge commercial and practical potentials are achieved.
Owner:ZHONGBEI UNIV +1

Single-surface friction power generator based on transverse friction and preparation method of single-surface friction power generator

The invention relates to the technical field of MEMS (Micro-electro-mechanical System) integration processing, in particular to a single-surface friction power generator based on transverse friction and a preparation method of the single-surface friction power generator. The single-surface friction power generator is formed in a manner that two identical structures are arranged in a relatively and mutually horizontal friction manner, wherein each structure comprises five layers; conducting layers are arranged at the outermost layers; thin film layers are adjacent to the conducting layers; thin film nano structure layers are arranged on the other sides of the thin film layers; metal electrodes are arranged on the other sides of the thin film nano structure layers; and metal electrode nano structure layers are arranged on the other sides of the metal electrodes. The single-surface friction power generator has the advantages that compared with the traditional two-layer thin film power generator in a vertical direction, the single-layer structure uses friction in a horizontal direction, and electrode outputs are in the same plane, so that subsequent processing and integration are facilitated; the nano power generator and the preparation method thereof are simple in technology, low in cost, high in productivity, and easy to integrate and process; mass production is available; and the novel structure effectively uses the friction in the horizontal direction in nature.
Owner:PEKING UNIV

Double-sided wearable friction nanogenerator and preparation method thereof

The invention provides a double-sided wearable friction nanogenerator and a preparation method thereof. The friction nanogenerator comprises a first high-molecular polymer film layer, a friction electrode layer and a second high-molecular polymer friction film layer which are sequentially distributed in a stacked manner; a human body is taken as a second electrode and connected with the ground; the two layers of friction films are formed by flexible high-molecular polymers; nanostructures are modified on the outer surfaces; the flexible high-molecular polymer film layers can be worn on the human body and rub against the skin of the human body; and the friction electrode layer is a voltage and current output electrode of the friction nanogenerator. The flexible materials of which the surfaces are modified with the concave-convex nanostructures are utilized as two high-molecular polymer film layers, so that the roughness and the contact area of the friction surface are improved and more inductive charges are generated. According to the friction nanogenerator provided by the invention, by unique double-sided friction layer and flexible materials, energy in different directions can be collected and output of higher energy is achieved.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Flexible wearable friction nanometer power generator with comprehensive multi-mode mechanical energy collecting functions

The invention belongs to the technical field of flexible devices, and discloses a flexible wearable friction nanometer power generator with comprehensive multi-mode mechanical energy collecting functions. The flexible wearable friction nanometer power generator comprises a first friction component and a second friction component. Each friction component comprises an insulating isolation layer, a conductive element and a friction layer. A first friction surface and a second friction surface are in contact-separation cycle under the effect of normal external force when the flexible wearable friction nanometer power generator is in contact and separation modes under the effect of external force, the normal relative distances between friction units on the two friction surfaces change, and electric signals can be outputted to outer circuits by the first conductive element and the second conductive element; the first friction surface and the second friction surface relatively slide under theeffect of tangential external force when the flexible wearable friction nanometer power generator is in independent friction modes, the tangential relative locations of the first friction units and the second conductive element change, and electric signals can be outputted to the outer circuits by two secondary second conductive elements of the second conductive element. The flexible wearable friction nanometer power generator has the advantages that the multi-dimensional mechanical energy collecting performance of the flexible wearable friction nanometer power generator can be enhanced, andthe electric output performance of the flexible wearable friction nanometer power generator can be improved.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products