Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

136 results about "Self-assembling peptide" patented technology

Self-assembling peptides are a category of peptides which undergo spontaneous assembling into ordered nanostructures. Originally described in 1993, these designer peptides have attracted interest in the field of nanotechnology for their potential for application in areas such as biomedical nanotechnology, tissue cell culturing, molecular electronics, and more.

Composition and method for self-assembly and mineralizatin of peptide amphiphiles

The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
Owner:NORTHWESTERN UNIV

Composition and method for self-assembly and mineralization of peptide amphiphiles

The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and / or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
Owner:NORTHWESTERN UNIV

Methods, compositions, and biomimetic catalysts for the synthesis of silica, polysilsequioxanes, polysiloxanes, non-silicon metalloid-oxygen networks, polymetallo-oxanes, and their organic or hydrido conjugates and derivatives

The in vitro polymerization of silica, silicone, non-silicon metalloid-oxane and metallo-oxane polymer networks, by combining a catalyst and a substrate to polymerize the substrate to form silica, polysiloxanes, polymetalloid-oxanes polymetallo-oxanes (metal oxides), polyorganometalloid oxanes, polyorganometallo oxanes, and the polyhydrido derivatives thereof, at about neutral pH. The nanostructure-directing catalysts have a nucleophilic functionality and a hydrogen-bonding acceptor group, and include: silicateins, enzymes that work by a mechanism functionally related to that of the silicateins; self-assembling peptides related to those synthesized and demonstrated capable of acting as biomimetic substitutes for the silicateins; non-peptide-based synthetic polymers containing a nucleophilic group and a hydrogen bonding amine such that the polymer functions by a mechanism of action related to that of the silicateins; materials having such chemical functionality as a nucleophilic group and or a hydrogen bonding amine which, acting in concert with nanoconfinement and or chemical functionality of the surface or matrix to which the functionality is attached, acts catalytically by a mechanism related to that of the silicateins; and small-molecule non-polymeric biomimetic catalysts that operate by the same mechanism as silicateins. The substrate is selected from groups consisting of silicon alkoxides, non-silicon metalloid alkoxides or metal alkoxides, and any organic, organometallic or hydrido derivatives of the foregoing; inorganic and organic oxygen-containing chelates of silicon, non-silicon metalloids or metals and any organic, organometallic or hydrido derivatives of the foregoing; and inorganic and organic esters of the hydoxides of silicon, non-silicon metalloids or metals and any organic, organometallic or hydrido derivatives of the foregoing; and inorganic and organic hydolyzable salts, complexes or conjugates of the hydroxides of silicon, non-silicon metalloids or metals and any organic, organometallic and hydrido derivates of the foregoing.
Owner:RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products