Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1076 results about "Peptide sequence" patented technology

Peptide sequence, or amino acid sequence, is the order in which amino acid residues, connected by peptide bonds, lie in the chain in peptides and proteins. The sequence is generally reported from the N-terminal end containing free amino group to the C-terminal end containing free carboxyl group. Peptide sequence is often called protein sequence if it represents the primary structure of a protein.

Metod of modulation of interaction between receptor and ligand

The present invention relates to a method for modulating the interaction between at least two proteins, wherein at least one of the two proteins is a functional cell-surface receptor and the other protein is the receptor ligand. The invention features a binding site of said functional cell-surface receptor on the receptor ligand and discloses a series of amino acid sequences, which are part of the structure of said binding site and/or involved in the interaction between the receptor and the ligand. Moreover, the present invention features methods for molecular design and screening of a candidate compound capable of modulating the interaction between the functional cell-surface receptor and receptor ligand through the described binding site, and provides a screening assay for identification of such a compound. The invention further describes an antibody capable of binding to the above binding site and/or to an epitope comprising an amino acid sequence essential for executing the receptor ligand interaction through said binding site. The invention also concerns a variety of uses of the disclosed methods, peptide sequences and antibodies. The invention in preferred embodiments concerns the binding site of the fibroblast growth factor receptor (FGFR) on FGFR ligands, compounds capable of modulating the receptor ligand interaction through said binding site, and antibody capable of recognition of said binding site.
Owner:ENKAM PHARMA

Surgical adhesive compostion and process for enhanced tissue closure and healing

A surgical tissue adhesive composition contains at least one 1,1-disubstituted electron-deficient olefin macromer. The adhesive composition of the invention has improved biocompatibility as well as controlled biodegradation characteristics and bioactivity. Adhesive co-monomer compositions contain at least one macromer with a pendant oligomer, polymer, or peptide chain as an acrylic ester of the reactive olefin. The polymers formed therefrom have a grafted brush-like nature. The composition is particularly useful for creating an adhesive bond at the junction of living tissue in surgical applications. The adhesive composition may further comprise co-monomer, co-macromer, cross-linker, or inter-penetrating polymer compounds containing peptide sequences that are bioactive or enzyme responsive. The peptide sequences are selected to promote tissue infiltration and healing in a particular biological tissue. The sequences may contain specific cell-adhesion, cell-signaling, and enzyme-cleavable domains. Furthermore, a degradable filler material may be included in the composition to create a reinforced composite. The filler preferably has a higher degradation rate than the polymer matrix, generating porosity upon degradation. The adhesive may further contain entrapped or incorporated drugs or biologics, including antibiotics or growth factors. The adhesive can be used to bind together the edges of living tissues during surgical procedures. The cured composition provides interfacial bonding and mechanical fixation while promoting tissue infiltration and replacement of the adhesive polymer.
Owner:POLLOCK POLYMER GROUP

Exogenous gene knocking-in and integrating system on basis of CRISPR/Cas9, method for establishing exogenous gene knocking-in and integrating system and application thereof

The invention provides an exogenous gene knocking-in and integrating system on the basis of CRISPR/Cas9, a method for establishing the exogenous gene knocking-in and integrating system and application thereof. The exogenous gene knocking-in and integrating system comprises vectors with report/donor functions and Cas9 expression vectors. Each report/donor vector comprises two target gent homologous arms and an exogenous sequence fragment positioned between the two target gene homologous arms; homologous sequences, which are positioned on a target gene, of the two target gene homologous arms of each report/donor vector are respectively positioned on two sides of a target sequence of the target gene and are connected with the target sequence of the target gene; the exogenous sequence fragments comprise promoters, resistant genes, shorn peptide sequences, report genes and polyA tails which are sequentially arrayed, two SSA repair homologous sequences of each resistant gene are inserted into the resistant gene, and the target sequence of each target gene is inserted in a space between the two corresponding SSA repair homologous sequences. The exogenous gene knocking-in and integrating system, the method and the application have the advantages that exogenous genes can be integrated with endogenous gene sequences in an efficient site-directed and accurately targeted manner, and double-chromosome allelic gene double-knocking-in can be efficiently carried out.
Owner:成都中科奥格生物科技有限公司

Synthesis method of semaglutide

The invention relates to a synthesis method of semaglutide. According to the method, a semaglutide product is synthesized by adopting a solid-liquid phase combination method, and three fragments are simultaneously synthesized in a synthesis manner of 16+6+9 fragments, and therefore, the synthesis time of the product is greatly shortened; moreover, by step-by-step analysis on synthesis factors of His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly, Gln-Ala-Ala-N6-[N-(17-carboxy-1-oxoheptadecyl-L-gama-glutamyl [2-(2-aminoethoxy) ethoxy] acetyl [2-(2-aminoethoxy) ethoxy] acetyl]-Lys-Glu-Phe, Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly-OH and the like, the difficulty in synthesis of a peptide sequence in solid-phase synthesis is reduced, the problem of batch amplification in the solid-phase synthesis is solved, and the synthesis efficiency is improved; and as liquid-phase fragment synthesis is adopted, the purification difficulty is effectively reduced, and the production cost is greatly lowered. The synthesis method disclosed by the invention has the advantages that the synthesis time can be shortened by 40%, the cost of materials is lowered, the generation quantities of deletion peptide and hybrid peptide are decreased, and the synthesis method is suitable for industrial large-scale production.
Owner:SINOPEP ALLSINO BIOPHARMACEUTICAL CO LTD

Method for enhancing targeting selectivity of administration system by modifying cell penetrating peptide

The invention relates to modification of a cell penetrating peptide for realizing a low-toxicity administration system with a positive targeting selecting function. A shielding peptide, an enzymolysis substrate peptide and a cell-penetrating peptide are connected in sequence, so that an activatable cell penetrating peptide is formed; and a medicament and/or a tracer and/or a medicament carrier is connected or embedded or adsorbed to the cell penetrating peptide, so that an administration system is constructed. According to a shielding peptide sequence, positive charges carried on the surface of the administration system can be reduced or completely neutralized, the cell penetrating capability of the cell penetrating peptide is shielded, and the toxicity of the administration system on normal cells of an organism is lowered; and an enzymolysis substrate peptide sequence can be identified by enzyme systems secreted specifically by different pathological change tissue cells and fractured by enzyme hydrolysis, so that a cell penetrating peptide is released and is used for carrying a medicament and/or a medicament carrier through a cell membrane, and the medicament enters cells and is brought into play. The invention aims to actively convey an antitumor medicament to tumor tissues in a targeted way and make the antitumor medicament enter tumor cells to a larger extent by using the administration system which can be used for activating a cell penetrating function, so that the toxicity at a non-tumor position is lowered while the antitumor effect of the medicament is enhanced.
Owner:PEKING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products