Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

319results about "Cable fittings for cryogenic cables" patented technology

Thermal contraction compensation for superconducting and cryo-resistive cables

InactiveUS20100285968A1Eliminate and reduce magnitude of thermomechanicalSuperconductors/hyperconductorsApparatus for feeding conductors/cablesEngineeringThermal contraction
A method of compensating for thermal contraction of superconducting and cryo-resistive cables. The method includes the steps of determining a compensation length for a cable such that when the cable is subjected to an operating temperature, the cable is in or near a stress-free state, and installing the cable into a pipe such that portions of the cable extend outwardly past ends of the pipe. The method further includes the steps of marking each end of the cable such that the determined compensation length is visibly shown, forcing the cable into the pipe at an ambient installation temperature such that a cable pattern is formed therein, and maintaining the cable in the pipe to prevent the cable from being pushed out of the pipe.
Owner:ELECTRIC POWER RES INST INC

Terminal for connecting a superconducting multiphase cable to a room temperature electrical equipment

A terminal for connecting a superconducting multiphase cable, a superconducting three-phase cable for example, to a room temperature electrical equipment is described. The terminal includes a casing with cooling fluid, inside which the three cable superconductors are each connected with a resistive conductor the end of which is connected to the room temperature equipment phases at the outside of the casing. The terminal includes superconducting connectors between the three neutral superconductors and a single resistive conductor the end of which is externally associated with the room temperature equipment. The neutral superconducting connectors and the junction area of the connector of the single conductor are disposed inside the cold area of the casing.
Owner:PRYSMIAN CAVI E SISTEMI ENERGIA

Triaxial superconducting cable and termination therefor

In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith. Methods of forming and terminating a triaxial superconductor are disclosed.
Owner:SOUTHWIRE CO LLC

Cable cooling system

A system for providing cooling to cable such as superconducting cable which employs at least one cryocooling station or consolidated cryocooler / pumping station which processes coolant involving multiple cable lengths.
Owner:PRAXAIR TECH INC

High-current, compact flexible conductors containing high temperature superconducting tapes

High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
Owner:AMERICAN SUPERCONDUCTOR

Electricity transmission cooling system

A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.
Owner:AMERICAN SUPERCONDUCTOR

Three-conductor cable

A three-conductor cable includes three cables disposed in a triangular form in a cross sectional view thereof, and a first refrigerant path at a cable center portion surrounded by the three cables along a longitudinal direction of the three cables for flowing a refrigerant for cooling the three cables therethrough. The first refrigerant path is formed along a part of each of the three cables in a cross sectional view thereof.
Owner:HITACHI METALS LTD

Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable

The present invention relates to superconductive filter technology. According to the arrangement of the superconductive filter (1), a columnar resonating member (23) having a superconductive material formed on the surface thereof is attached at one of its ends thereof to an inner wall (22) of a filter housing (21) so that a space is interposed between the columnar resonating member and each of connectors (27a, 27b) which are connectable to a signal input / output cables (5a, 5b), respectively. According to this arrangement, heat conduction from the outside can be suppressed as far as possible, and the superconductive condition can be created with stability, with the result that a stable filtering characteristic can be created. Further, the superconductive filter according to the present invention will become excellent in power withstand performance, and hence even if the number of stages of filters is increased for attaining a steep cutoff characteristic, the loss deriving from the increased number of stages can be suppressed to the minimum level.
Owner:FUJITSU LTD

Terminal structure of extreme-low temperature equipment

A terminal structure of cryogenic equipment for leading a terminal of cryogenic equipment 100 from a very low temperature portion to a room temperature portion through a bushing, having a feature in that a connecting / heat-insulating portion 300 adiabatically connected with the aforementioned very low temperature portion 200 and the aforementioned room temperature portion 400 is provided along the outer circumference of the aforementioned bushing 30 between the aforementioned very low temperature portion 200 and the aforementioned room temperature portion 400.
Owner:SUMITOMO ELECTRIC IND LTD +1

Terminal structure

ActiveUS20060011377A1Guaranteed contactExpensive alternative solutions to the problem can be avoidedSuperconductors/hyperconductorsCoupling device detailsElectrical conductorEngineering
A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.
Owner:NEXANS

Superconductor cooling system and superconductor cooling method

A superconductor cooling system has: a first superconductor; a first cooling conductor used for cooling the first superconductor; a first cooling unit configured to cool the first cooling conductor to a first temperature; and a current lead configured to supply a current to the first superconductor. Here, a part of a path of the current is formed of a second superconductor. The superconductor cooling system further has: a second cooling conductor used for cooling the second superconductor; a second cooling unit configured to cool the second cooling conductor to a second temperature; and a first thermal conduction switch connected between the first cooling conductor and the second cooling conductor to ON and OFF heat transfer between the first cooling conductor and the second cooling conductor.
Owner:MITSUBISHI HEAVY IND LTD

Fault Current Limiting HTS Cable and Method of Configuring Same

A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
Owner:AMERICAN SUPERCONDUCTOR

Multiphase superconducting cable connection structure and multiphase superconducting cable line

A multiphase superconducting cable connection structure includes a connection box accommodating three conductor connects connecting a superconductor of a cable core of each phase extracted from a pair of 3-phase superconducting cables, a solid insulation member fixed to an outer circumference of each conductor connect, and a metal flange fixing the solid insulation member to the connection box. By fixing the metal flange to the connection box (a refrigerant vessel), the conductor connect can be positioned and the conductor connector's movement caused as the cable core thermally contracts can be reduced. The structure can help to position the conductor connect in the connection box and reliably hold it at a prescribed position.
Owner:SUMITOMO ELECTRIC IND LTD

Superconducting fault current-limiter with variable shunt impedance

ActiveUS20110177953A1Current flow through the at least one variable-impedance shuntEasy to moveSuperconductor detailsCable fittings for cryogenic cablesEngineeringLow impedance
A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.
Owner:SUPERPOWER INC

Superconducting cable termination

Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.
Owner:SOUTHWIRE CO LLC

Jointing structure and jointing method for superconducting cable

An intermediate jointing structure having excellent mechanical and electrical characteristics and method of preparing the same. The intermediate jointing structure includes a metal pipe and a jointing sleeve. The metal pipe is inserted between a pair of superconducting cables and is fixed to the formers by welding. A plurality of superconductor wires, shorter than the conductive metal tube, are arranged around a conductive metal tube in a longitudinal direction. The arranged superconductor wires are taped with Ag tape so as to form the jointing sleeve. The jointing sleeve is jointed and fixed on an outer surface of the metal pipe.
Owner:LG CABLE LTD (KR)

Superconducting current lead

A superconducting current lead includes a cylindrical support member 3, and superconducting wire material units 1 each of which is fixed onto the support member and each of which is composed of a single tape-like oxide superconducting wire material or a laminated tape-like oxide superconducting wire material, wherein tape surf aces of the superconducting wire material units are disposed in parallel with a circumferential direction in a cylindrical coordinate system, and the cylindrical support member is formed from a low thermal conductivity material.
Owner:JAPAN ATOM ENERGY RES INST +2

Electricity transmission cooling system

A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.
Owner:AMERICAN SUPERCONDUCTOR

Terminal structure of extreme-low temperature equipment

A terminal structure of cryogenic equipment for leading a terminal of cryogenic equipment 100 from a very low temperature portion to a room temperature portion through a bushing, having a feature in that a connecting / heat-insulating portion 300 adiabatically connected with the aforementioned very low temperature portion 200 and the aforementioned room temperature portion 400 is provided along the outer circumference of the aforementioned bushing 30 between the aforementioned very low temperature portion 200 and the aforementioned room temperature portion 400.
Owner:SUMITOMO ELECTRIC IND LTD

Electrical bushing for a superconductor element

The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.
Owner:NEXANS

Terminal structure of superconducting cable and superconducting cable line therewith

InactiveUS20050061537A1Avoid damageLarge magnetic field generated external to each cable core can beSuperconductors/hyperconductorsSoldered/welded conductive connectionsInsulation layerEngineering
The present invention provides a terminal structure of a superconducting cable including a cable core having a superconducting shield layer and an electrical insulation layer. The superconducting shield layer has a radially outer portion provided with by a connection electrode and the superconducting shield layer and the connection electrode are connected together with a low melting solder. The connection electrode has a ground wire connected thereto to ground the superconducting shield layer. For a multiphase cable including a plurality of cable cores, connection electrodes are linked by a conductive coupling member to short circuit superconducting shield layers. The superconducting shield layer can be grounded without impaired insulating property of the electrical insulation layer.
Owner:SUMITOMO ELECTRIC IND LTD +1

Superconducting Power Cable

A superconducting cable for power lead and transmission applications is disclosed. The high performance power cable comprises two type of different superconducting cable structures arranged co-axially, and the magnetic fields of their transport currents mutually enhance their performances. A further object is a power distribution cable that minimizes the cryogenic losses by a design of the compact cable cross-sections.
Owner:TAKAYASU MAKOTO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products