Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1579results about "Diaphragms for radiation diagnostics" patented technology

Systems and methods for imaging large field-of-view objects

InactiveUS7108421B2Quantity minimizationAvoiding corrupted and resulting artifacts in image reconstructionMaterial analysis using wave/particle radiationRadiation/particle handlingBeam sourceX-ray
An imaging apparatus and related method comprising a source that projects a beam of radiation in a first trajectory; a detector located a distance from the source and positioned to receive the beam of radiation in the first trajectory; an imaging area between the source and the detector, the radiation beam from the source passing through a portion of the imaging area before it is received at the detector; a detector positioner that translates the detector to a second position in a first direction that is substantially normal to the first trajectory; and a beam positioner that alters the trajectory of the radiation beam to direct the beam onto the detector located at the second position. The radiation source can be an x-ray cone-beam source, and the detector can be a two-dimensional flat-panel detector array. The invention can be used to image objects larger than the field-of-view of the detector by translating the detector array to multiple positions, and obtaining images at each position, resulting in an effectively large field-of-view using only a single detector array having a relatively small size. A beam positioner permits the trajectory of the beam to follow the path of the translating detector, which permits safer and more efficient dose utilization, as generally only the region of the target object that is within the field-of-view of the detector at any given time will be exposed to potentially harmful radiation.
Owner:MEDTRONIC NAVIGATION

Cone beam computed tomography with a flat panel imager

A radiation therapy system that includes a radiation source that moves about a path and directs a beam of radiation towards an object and a cone-beam computer tomography system. The cone-beam computer tomography system includes an x-ray source that emits an x-ray beam in a cone-beam form towards an object to be imaged and an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, the imager providing an image of the object. A computer is connected to the radiation source and the cone beam computerized tomography system, wherein the computer receives the image of the object and based on the image sends a signal to the radiation source that controls the path of the radiation source.
Owner:WILLIAM BEAUMONT HOSPITAL

Cone-beam computerized tomography with a flat-panel imager

A radiation therapy system that includes a radiation source that moves about a path and directs a beam of radiation towards an object and a cone-beam computer tomography system. The cone-beam computer tomography system includes an x-ray source that emits an x-ray beam in a cone-beam form towards an object to be imaged and an amorphous silicon flat-panel imager receiving x-rays after they pass through the object, the imager providing an image of the object. A computer is connected to the radiation source and the cone beam computerized tomography system, wherein the computer receives the image of the object and based on the image sends a signal to the radiation source that controls the path of the radiation source.
Owner:WILLIAM BEAUMONT HOSPITAL

X-ray computed tomography apparatus

An X-ray computed tomography apparatus includes a first X-ray tube configured to generate X-rays with which a subject to be examined is irradiated, a first X-ray detector configured to detect X-rays transmitted through the subject, a second X-ray tube which generates X-rays with which a treatment target of the subject is irradiated, a rotating mechanism which rotates the first X-ray tube, the first X-ray detector, and the second X-ray tube around the subject, a reconstructing unit configured to reconstruct an image on the basis of data detected by the first X-ray detector, and a support mechanism which supports the second X-ray tube. The central axis of X-rays from the second X-ray tube tilts with respect to a body axis of the subject. This makes it possible to reduce the dose on a portion other than a treatment target.
Owner:TOSHIBA MEDICAL SYST CORP

Dynamic multi-spectral X-ray projection imaging

A multispectral X-ray imaging system uses a wideband source and filtration assembly to select for M sets of spectral data. Spectral characteristics may be dynamically adjusted in synchrony with scan excursions where an X-ray source, detector array, or body may be moved relative to one another in acquiring T sets of measurement data. The system may be used in projection imaging and / or CT imaging. Processed image data, such as a CT reconstructed image, may be decomposed onto basis functions for analytical processing of multispectral image data to facilitate computer assisted diagnostics. The system may perform this diagnostic function in medical applications and / or security applications.
Owner:FOREVISION IMAGING TECH LLC

High spatial resolution X-ray computed tomography (CT) system

A high spatial resolution X-ray computed tomography (CT) system is provided. The system includes a support structure including a gantry mounted to rotate about a vertical axis of rotation. The system further includes a first assembly including an X-ray source mounted on the gantry to rotate therewith for generating a cone X-ray beam and a second assembly including a planar X-ray detector mounted on the gantry to rotate therewith. The detector is spaced from the source on the gantry for enabling a human or other animal body part to be interposed therebetween so as to be scanned by the X-ray beam to obtain a complete CT scan and generating output data representative thereof. The output data is a two-dimensional electronic representation of an area of the detector on which an X-ray beam impinges. A data processor processes the output data to obtain an image of the body part.
Owner:RGT UNIV OF MICHIGAN

Apparatus and method for cone beam volume computed tomography breast imaging

Cone beam volume CT breast imaging is performed with a gantry frame on which a cone-beam radiation source and a digital area detector are mounted. The patient rests on an ergonomically designed table with a hole or two holes to allow one breast or two breasts to extend through the table such that the gantry frame surrounds that breast. The breast hole is surrounded by a bowl so that the entire breast can be exposed to the cone beam. Spectral and compensation filters are used to improve the characteristics of the beam. A materials library is used to provide x-ray linear attenuation coefficients for various breast tissues and lesions.
Owner:UNIVERSITY OF ROCHESTER

Tetrahedron beam computed tomography

A method of imaging an object that includes directing a plurality of x-ray beams in a fan-shaped form towards an object, detecting x-rays that pass through the object due to the directing a plurality of x-ray beams and generating a plurality of imaging data regarding the object from the detected x-rays. The method further includes forming either a three-dimensional cone-beam computed tomography, digital tomosynthesis or Megavoltage image from the plurality of imaging data and displaying the image.
Owner:WILLIAM BEAUMONT HOSPITAL

Multi-parameter X-ray computed tomography

The present invention relates to the field of x-ray imaging. More particularly, embodiments of the invention relate to methods, systems, and apparatus for imaging, which can be used in a wide range of applications, including medical imaging, security screening, and industrial non-destructive testing to name a few. Specifically provided as embodiments of the invention are systems for x-ray imaging comprising: a) a first collimator-and-detector assembly having a first operable configuration to provide at least one first dataset comprising primary x-ray signals as a majority component of its data capable of being presented as a first image of an object subjected to x-ray imaging; b) a second collimator-and-detector assembly having a second operable configuration or wherein the first collimator-and-detector assembly is adjustable to a second configuration to provide at least one second dataset comprising primary and dark-field x-ray signals as a majority component of its data capable of being presented as a second image of the object; and c) a computer operably coupled with the collimator-and-detector assemblies comprising a computer readable medium embedded with processing means for combining the first dataset and the second dataset to extract the dark-field x-ray signals and produce a target image having higher contrast quality than the images based on the first or second dataset alone. Such systems can be configured to comprise at least two collimator-and-detector assemblies or configurations differing with respect to collimator height, collimator aperture, imaging geometry, or distance between an object subjected to the imaging and the collimator-and-detector assembly.
Owner:VIRGINIA TECH INTPROP INC

X-ray imaging system and x-ray imaging method

An X-ray imaging system is for irradiating a subject with X ray from an X-ray source at a plurality of different angles to acquire X-ray images, and reconstructing an X-ray tomographic image from the X-ray images. The system comprising a region setting unit for setting a region of interest on a pre-shot image or a previously acquired X-ray tomographic image, an imaging control unit for continuously varying an aperture formed by collimator blades according to a position of the X-ray source to image the region of interest and acquiring projection data of the X-ray images in accordance with the position of the X-ray source, and an image reconstructing unit for reconstructing the X-ray tomographic image from the projection data of the X-ray images of the region of interest. The aperture formed by the collimator blades are varied so that all the X-ray images formed on the X-ray detector is rectangular regardless of the position of the X-ray source.
Owner:FUJIFILM CORP

Computer tomography imaging device and method

The present invention discloses a method for performing CT imaging on a region of interest of an object under examination, comprising: acquiring the CT projection data of the region of interest; acquiring the CT projection data of region B; selecting a group of PI line segments covering the region of interest, and calculating the reconstruction image value for each PI line segment in the group; and combining the reconstruction image values in all the PI line segments to obtain the image of the region of interest. The present invention further discloses a CT imaging device using this method and a data processor therein. Since the 2D / 3D slice image of the region of interest can be exactly reconstructed and obtained as long as the X-ray beam covers the region of interest and the region B, it is possible to use a small-sized detector to perform CT imaging on the region of interest at any position of a large-sized object, which reduces to a great extent the radiation dose of the X-ray during the CT scanning.
Owner:TSINGHUA UNIV +1

X-ray apparatus

An investigative X-ray apparatus comprises a source of X-rays emitting a cone beam centred on a beam axis, a collimator to limit the extent of the beam, and a two-dimensional detector, the apparatus being mounted on a support which is rotatable about a rotation axis, the collimator having a first state in which the collimated beam is directed towards the rotation axis and the second state in which the collimated beam is offset from the rotation axis, the two-dimensional detector being movable accordingly, the beam axis being offset from the rotation axis by a lesser amount than the collimated beam in the second state. The X-ray source is no longer directed towards the isocentre as would normally be the case; the X-ray source is not orthogonal to the collimators. This is advantageous in that the entire field of the X-ray tube can be utilised. As a result, a lesser field is required of the X-ray tube and the choice of tube designs and capacities can be widened so as to optimise the performance of the X-ray tube in other aspects.
Owner:ELEKTA AB

X-ray imaging system and imaging method

The present invention provides an apparatus capable of X-ray imaging utilizing phase of X-rays. An X-ray imaging apparatus equipped with first and second diffraction gratings and an X-ray image detector are described. The first diffraction grating generates a Talbot effect and a second diffraction grating diffracts X-rays diffracted by the first diffraction grating. An image detector is provided to detect the X-rays diffracted by the second diffraction grating. In this manner, image contrasts caused by changes in phase of X-rays due to a subject arranged in front of the first diffraction grating or between the first diffraction grating and the second diffraction grating can be achieved.
Owner:MOMOSE ATSUSHI

Dynamic multi-spectral imaging with wideband seletable source

A multispectral X-ray imaging system uses a wideband source and filtration assembly to select for M sets of spectral data. Spectral characteristics may be dynamically adjusted in synchrony with scan excursions where an X-ray source, detector array, or body may be moved relative to one another in acquiring T sets of measurement data. The system may be used in projection imaging and / or CT imaging. Processed image data, such as a CT reconstructed image, may be decomposed onto basis functions for analytical processing of multispectral image data to facilitate computer assisted diagnostics. The system may perform this diagnostic function in medical applications and / or security applications.
Owner:FOREVISION IMAGING TECH LLC

Medical visualization system with endoscope and mounted catheter

The present invention is directed to features and aspects of an in-vivo visualization system that comprises a catheter having an access port leading to an interior lumen through which an image transmission member is routed, and an endoscope having an access port leading to an interior lumen through which the catheter is routed. The catheter and endoscope are connected by an endoscope attachment device such that a handle of the catheter is mounted distal of the endoscope access port and the catheter access port is distal to the mounted position.
Owner:BOSTON SCI SCIMED INC

Method And System For Dynamic Low Dose X-ray Imaging

A method and system for performing fluoroscopic imaging of a subject has high temporal and spatial resolution in a center portion of the captured dynamic images. The system provides for reduced X-ray dose to the patient associated with that part of the X-ray beam associated with a peripheral portion of the captured images although temporal, and in some embodiments spatial, resolution is reduced in the peripheral portion of the image. The system uses a rotating collimator to produce an X-ray beam having narrow wing portions associated with the peripheral portions of the image, and a broader central region associated with the high resolution center portion of the images.
Owner:FOREVISION IMAGING TECH LLC

X-ray imaging system and imaging method

The object of the present invention is to provide an apparatus capable of X-ray imaging utilizing phase of X-rays with a simple construction. The X-ray imaging apparatus of the present invention is equipped with first and second diffraction gratings and an X-ray image detector. The first diffraction grating is constructed to generate the Talbot effect using X-rays irradiated at the first diffraction grating. The second diffraction grating is configured so as to diffract the X-rays diffracted by the first diffraction grating. The X-ray image detector is configured so as to detect the X-rays diffracted by the second diffraction grating. By diffracting X-rays diffracted by the first diffraction grating, the second diffraction grating is capable of forming image contrast caused by changes in phase of X-rays due to the subject arranged in front of the front surface of the first diffraction grating or between the first diffraction grating and the second diffraction grating. The X-ray image detector is capable of detecting X-rays creating image contrast.
Owner:MOMOSE ATSUSHI

Full field mammography with tissue exposure control, tomosynthesis, and dynamic field of view processing

InactiveUS7430272B2Effective and advantageous exposure controlImprove tomosynthesisMaterial analysis using wave/particle radiationRadiation/particle handlingTomosynthesisDynamic field
A mammography system using a tissue exposure control relying on estimates of the thickness of the compressed and immobilized breast and of breast density to automatically derive one or more technic factors. The system further uses a tomosynthesis arrangement that maintains the focus of an anti-scatter grid on the x-ray source and also maintains the field of view of the x-ray receptor. Finally, the system finds an outline that forms a reduced field of view that still encompasses the breast in the image, and uses for further processing, transmission or archival storage the data within said reduced field of view.
Owner:HOLOGIC INC

Preshaped localization catheter, system, and method for graphically reconstructing pulmonary vein ostia

Catheters, systems, and methods are provided for performing medical procedures, such as tissue ablation, adjacent the ostia of anatomical vessels, such as pulmonary veins. The catheter comprises an elongated flexible catheter body, which includes a proximal shaft portion and a distal shaft portion, and a tracking element carried by the distal shaft portion. The proximal section is pre-shaped to form a curve having an apex sized to be inserted into the vessel ostium, and a distal section configured to contact the adjacent tissue when the curve apex is inserted within the vessel ostium. The method may comprise inserting the curve apex into the vessel ostium to place the distal section in contact with a first tissue site adjacent the vessel ostium, and determining a location of the tracking element(s) within a coordinate system while the distal section is in contact with the first tissue site.
Owner:BOSTON SCI SCIMED INC

Method and apparatus for imaging with imaging detectors having small fields of view

An apparatus for imaging a structure of interest comprises a plurality of imaging detectors mounted on a gantry. Each of the plurality of imaging detectors has a field of view (FOV), is independently movable with respect to each other, and is positioned to image a structure of interest within a patient. A data acquisition system receives image data detected within the FOV of each of the plurality of imaging detectors.
Owner:GE HEALTHCARE ISRAEL

Digital flat panel x-ray receptor positioning in diagnostic radiology

A digital, flat panel, two-dimensional x-ray detector moves reliably, safely and conveniently to a variety of positions for different x-ray protocols for a standing, sitting or recumbent patient. The system makes it practical to use the same detector for a number or protocols that otherwise may require different equipment, and takes advantage of desirable characteristics of flat panel digital detectors while alleviating the effects of less desirable characteristics such as high cost, weight and fragility of such detectors.
Owner:HOLOGIC INC

Long length imaging using digital radiography

A method for long length imaging with a digital radiography apparatus. Setup instructions are obtained for the image and a set of imaging positions is calculated for an exposure series according to the setup instructions. An operator command is obtained to initiate an imaging sequence. The imaging sequence is executed for each member of the set of imaging positions in the exposure series by automatically repeating the steps of positioning a radiation source and a detector at a location corresponding to the specified member of the set of imaging positions and obtaining an image from the detector at that location and storing the image as a partial image. The long length image is generated by combining two or more partial images.
Owner:CARESTREAM HEALTH INC

Systems and methods for spectroscopy of biological tissue

The system and method of the present invention relates to using spectroscopy, for example, Raman spectroscopic methods for diagnosis of tissue conditions such as vascular disease or cancer. In accordance with a preferred embodiment of the present invention, a system for measuring tissue includes a fiber optic probe having a proximal end, a distal end, and a diameter of 2 mm or less. This small diameter allows the system to be used for the diagnosis of coronary artery disease or other small lumens or soft tissue with minimal trauma. A delivery optical fiber is included in the probe coupled at the proximal end to a light source. A filter for the delivery fibers is included at the distal end. The system includes a collection optical fiber (or fibers) in the probe that collects Raman scattered radiation from tissue, the collection optical fiber is coupled at the proximal end to a detector. A second filter is disposed at the distal end of the collection fibers. An optical lens system is disposed at the distal end of the probe including a delivery waveguide coupled to the delivery fiber, a collection waveguide coupled to the collection fiber and a lens.
Owner:MASSACHUSETTS INST OF TECH

Medical Digital X-Ray Imaging Apparatus and Medical Digital X-Ray Sensor

In a medical digital X-ray imaging apparatus having a plurality of imaging modes including computed tomography mode, a supporter supports an X-ray source and a digital X-ray sensor having a two-dimensional detection plane for detecting X-rays, while interposing an object between them. An image reconstructor acquires data from the digital X-ray sensor and reconstructs an image based on the acquired data. An operator selects one of a first imaging mode and a second imaging mode. The second imaging mode has an irradiation field different from the first imaging mode and has an area to be read in the digital X-ray sensor smaller than that in the first imaging mode.
Owner:MORITA MFG CO LTD

Apparatus for acquisition of CT data with penumbra attenuation calibration

The present invention is a directed method and apparatus for collimating a radiation beam such that the full intensity of the radiation beam does not impinge detectors of a radiation detector assembly that are particularly susceptible to saturation or over-ranging. This collimation can be dynamically adjusted on a per view basis using empirical or scout scan data.
Owner:GENERAL ELECTRIC CO

Radiographic apparatus and method for switching a grid

InactiveUS7110502B2Reducing grid stripes generatedRadiation/particle handlingTomographySoft x rayTwo dimensional detector
This invention provides a radiographic apparatus and method, which can suitably set a grid in radiography or fluoroscopy and execute fluoroscopy or radiography of an object under optimum imaging conditions. The radiographic apparatus includes an X-ray unit (102) which irradiates an object with radiation (X-rays), a two-dimensional detector (106) which detects, through a grid, the radiation which has passed through the object, and a read control unit (107) which acquires an image of the object from the detected X-rays. The apparatus further includes a user interface (113) capable of setting imaging conditions such as an X-ray condition, grid condition, and read condition, a grid switching unit (105) which selects one of a plurality of grids on the basis of the set imaging conditions, and a grid stripe reduction unit (109) which reduces grid stripes generated on the image by the grid.
Owner:CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products