Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

849results about "Open-loop automatic control systems" patented technology

DC-DC converter with improved dynamic response

The invention relates to a control method and a controller for a DC-DC converter, such as a synchronous Buck converter, which exploits the principle of capacitor charge balance to allow the converter to recover from a positive and/or negative load current step in the shortest achievable time, with the lowest possible voltage undershoot/overshoot. The control method may be implemented by either an analog or a digital circuit. The controller may be integrated with existing controller schemes (such as voltage-mode controllers) to provide superior dynamic performance during large-signal transient conditions while providing stable operation during steady state conditions. The invention also relates to a method and a modification of a DC-DC converter topology that comprises connecting a controlled current source between an input terminal and an output terminal of the DC-DC converter; detecting a load current step to a new load current; modifying a duty cycle of the DC-DC converter; and modifying current through a parallel output capacitor of the DC-DC converter by controlling current of the current source. The methods and circuits provided herein are applicable to Buck converters and Buck-derived converters such as forward, push-pull, half-bridge, and full-bridge converters.
Owner:GANPOWER SEMICON FOSHAN LTD

Multiple stage sequential current regulator

An LED driver circuit operating from the AC power line providing high efficiency, good line and load regulation, high power factor, low line current harmonics, low conducted EMI, high LED utilization, and lamp dimming compatibility, while consisting of a minimal number of components. No inductors, nor capacitors (including electrolytics), nor high current switching transistors are employed. The top of a string of series connected LED segments is connected to the output of a rectifier, which in turn is connected to an AC sine wave power source. The string is tapped at various locations, including the bottom of the string. Each segment can consists of any number of serial or parallel connected LEDs. Current control elements or regulators sink current at each tap and are sequentially turned on and off one at a time, tracking the rectified sine wave voltage. Voltage across each regulator and current when conducting is individually controllable. Power loss in the regulators is minimized by keeping regulator voltage to a minimum. The regulators may control current in a multitude of ways, including a constant current, or a current dependent on voltage across the regulators including a resistor, or a combination. The driver is self-commutating, with the sequencing of the current control elements an inherent feature closely integrated with the current control elements and providing optimal performance over variable operating conditions. Given the large number of design variables, the driver circuit can be optimized for various performance criteria including input voltage range, line / load regulation, output power / current, efficiency, power factor, line current harmonics, dimmer compatibility, and LED utilization.
Owner:MICROCHIP TECH INC

High-efficiency high-voltage difference ratio bi-directional converter

The aim of this invention focuses on the development of a high-efficiency bidirectional converter for power sources with great voltage diversity. In traditional bidirectional converters, the circuit topology with transformer form is the common usual. Moreover, the soft-switching techniques including zero-voltage-switching (ZVS) or zero-current-switching (ZCS) are usually used for alleviating the corresponding switching losses. However, there are four and upward power semiconductor switches in these circuit schemes. By this way, it will result in the increase of production cost, and the degeneration of conversion efficiency. The coupled-inductor bidirectional scheme in the proposed converter only adopts three power semiconductor switches to accomplish the objective of bidirectional current control. Under the situation of non-isolation circuit topology, it still possesses the protection of electric safety for operators. Due to the characteristics of high step-up and step-down ratio, the battery module with low voltage could be injected into a high-voltage dc bus for the later utilization, e.g., high-voltage load, front-end of inverter. Since the techniques of voltage clamping, synchronous rectification and soft switching are manipulated in this circuit topology, and the corresponding device specifications are adequately performed, it can achieve the goal of high-efficiency bidirectional power conversion for power sources with great voltage diversity.
Owner:YUAN ZE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products