Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

198results about How to "Reduce data loss" patented technology

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY

System and method for synchronizing data trasnmission across a variable delay interface

A method of synchronizing data transmission between a host computer system and a transmitter across an interface with variable delay or latency. The host computer system marks transition frames between successive transmission intervals and transfers the outgoing frames across the variable interface to the transmitter. The transmitter enqueues outgoing frames into one or more FIFO transmission queue(s) and processes the enqueued frames as appropriate for the communication protocol in use. Marked frames are detected as they reach the head of the appropriate transmit queue. In particular, while bypassing is not active, the transmitter transmits unmarked frames until the end of the current interval, or until there is insufficient time in the interval to transmit another frame or until a marked frame is detected. While bypassing is not active, the transmitter terminates transmission from the transmit queue when a marked frame is detected during each interval. While bypassing is active, the transmitter discards unmarked frames without transmission until a marked frame is detected. During each interval, the transmitter activates bypassing if a marked frame has not been detected and deactivates bypassing if a marked frame is detected while bypassing is active. The transmitter enables queue mark operation if a marked frame is detected while queue mark operation is not enabled. The transmitter increments a bypass counter each time an interval ends without detecting a marked frame, and disables queue mark operation if the bypass counter reaches a predefined limit.
Owner:CONEXANT

Dynamic bandwidth allocation and service differentiation for broadband passive optical networks

A dynamic upstream bandwidth allocation scheme is disclosed, i.e., limited sharing with traffic prediction (LSTP), to improve the bandwidth efficiency of upstream transmission over PONs. LSTP adopts the PON MAC control messages, and dynamically allocates bandwidth according to the on-line traffic load. The ONU bandwidth requirement includes the already buffered data and a prediction of the incoming data, thus reducing the frame delay and alleviating the data loss. ONUs are served by the OLT in a fixed order in LSTP to facilitate the traffic prediction. Each optical network unit (ONU) classifies its local traffic into three classes with descending priorities: expedited forwarding (EF), assured forwarding (AF), and best effort (BE). Data with higher priority replace data with lower priority when the buffer is full. In order to alleviate uncontrolled delay and unfair drop of the lower priority data, the priority-based scheduling is employed to deliver the buffered data in a particular transmission timeslot. The bandwidth allocation incorporates the service level agreements (SLAs) and the on-line traffic dynamics. The basic limited sharing with traffic prediction (LSTP) scheme is extended to serve the classified network traffic.
Owner:NEW JERSEY INSTITUTE OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products