Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

462 results about "Blue emitting" patented technology

Light source having blue, blue-green, orange and red LED's

An illumination light source includes four different types of LEDs, namely a blue light-emitting diode 11 emitting blue light, a blue-green light-emitting diode 12 emitting blue-green light, an orange light-emitting diode 13 emitting orange light and a red light-emitting diode 14 emitting red light.
Owner:EVERLIGHT ELECTRONICS

White light emitting phosphor blends for LED devices

There is provided white light illumination system including a radiation source, a first luminescent material having a peak emission wavelength of about 575 to about 620 nm, a second luminescent material having a peak emission wavelength of about 495 to about 550 nm, which is different from the first luminescent material and a third luminescent material having a peak emission wavelength of about 420 to about 480 nm, which is different from the first and second luminescent materials. The LED may be a UV LED and the luminescent materials may be a blend of three or four phosphors. The first phosphor may be an orange emitting Eu2+, Mn2+ activated strontium pyrophosphate, Sr2P2O7:Eu2+, Mn2+. The second phosphor may be a blue-green emitting Eu2+ activated barium silicate, (Ba,Sr,Ca)2SiO4:Eu2+. The third phosphor may be a blue emitting SECA phosphor, (Sr,Ba,Ca)5(PO4)3Cl:Eu2+. Optionally, the fourth phosphor may be a red emitting Mn4+ activated magnesium fluorogermanate, 3.5MgO*0.5MgF2*GeO2:Mn4+. A human observer perceives the combination of the orange, blue-green, blue and / or red phosphor emissions as white light.
Owner:GE LIGHTING SOLUTIONS LLC

Method for preparing epitaxial-substrate and method for manufacturing semiconductor device employing the same

The present invention provides a method for preparing epitaxial-substrate, for growing a multilayered structure of GaN based semiconductor layers on the epitaxial-substrate so as to construct a semiconductor device such as blue-emitting laser diode and LED. The method for preparing the epitaxial-substrate encompasses (a) growing a first GaN based semiconductor layer on a bulk-substrate; (b) growing an InGaN based semiconductor layer on the first GaN based semiconductor layer; (c) growing a second GaN based semiconductor layer on the InGaN based semiconductor layer; and (d) separating the second GaN based semiconductor layer from the first GaN based semiconductor layer to provide the epitaxial-substrate. The epitaxial-substrate having a high crystallographic perfection and an excellent surface morphology is obtained simply and in a short time. The defect density of the single crystalline GaN based semiconductor layer film grown on the epitaxial-substrate is greatly reduced.
Owner:KK TOSHIBA

Organic electroluminescent display device

An organic electroluminescent display device including first to fourth pixel regions each including red, green and blue sub-pixel regions, each of the first to fourth pixel regions being divided into first and second column, and the first column being divided into first and second rows, wherein a red sub-pixel region and a green sub-pixel region are respectively arranged in the first and second rows, and a blue sub-pixel region is arranged in the second column; a red emitting layer formed in the red sub-pixel region; a green emitting layer formed in the green sub-pixel region; and a blue emitting layer formed in the blue sub-pixel region.
Owner:LG DISPLAY CO LTD

Blue light emitting compound and organic electroluminescent device using the same

A blue light emitting compound and an organic electroluminescent device using the compound are provided. The device exhibits improved color purity of blue emission and excellent life characteristics so as to be used to manufacture a full-color display.
Owner:SFC CO LTD

Light emitting diode package with self dosing feature and methods of forming same

Light emitting diodes are prepared with specialized packages which provide a dosing feature with respect to a phosphor wavelength converting medium. Elements of the device package form a specially shaped cavity when coupled together. The shape and size of the cavity operates to control the dosing of phosphor spiked medium of soft gel. The gel fills the cavity such that light emitted from a semiconductor die is exposed to a similar cross section independent of the exact direction of light propagation. In this way, 'white' LED systems are formed from blue emitting diodes as highly controlled phosphor dosing permits precise amounts of blue light to be converted to yellow light without problems with angular uniformity observed in competing technologies.
Owner:ACOL TECH

Deep red phosphor for general illumination applications

A light emitting device including a UV semiconductor light source and a phosphor blend including a blue emitting phosphor, a green emitting phosphor and a deep red emitting phosphor comprising (Ba,Sr,Ca)3MgxSi2O8:Eu2+, wherein 1≦x≦2. Also disclosed is a phosphor blend comprising a blue emitting phosphor, a green emitting phosphor and a red emitting phosphor comprising (Ba,Sr,Ca)3MgxSi2O8:Eu2.
Owner:GENERAL ELECTRIC CO

White OLED with two blue light-emitting layers

An organic white light-emitting device, including a substrate; an anode and a cathode spaced from each other; a light-emitting layer including a yellow dopant for emitting yellow light; and first and second blue light-emitting layers, each blue light-emitting layer having at least one different material than the other blue light-emitting layer.
Owner:GLOBAL OLED TECH

Saturated yellow phosphor converted LED and blue converted red LED

ActiveUS20100254129A1Produce and consistent and efficient light without the need for costly and complex circuitryPlanar light sourcesLight source combinationsBlue emissionBlue emitting
SSL lamps or luminaires are disclosed that combine blue, yellow (or green) and red photons or emissions to generate light with the desired characteristics. In different embodiments according to the present invention, the blue emission is not provided by an LED chip or package having a blue LED coated with a yellow phosphor, with blue light leaking through the yellow phosphor. Instead, the blue light component can be provided by other types of LED chips in the SSL luminaire such as one having a blue LED covered by a different colored conversion material, with blue light from the blue LED leaking through the different colored conversion material. In one embodiment, the blue component can be provided by an LED chip comprising a blue emitting LED covered by a conversion material that absorbs blue light and re-emits red light, with a portion of the blue light from the LED leaking through the red conversion material.
Owner:CREELED INC

Light emitting device

A blue-emitting phosphor is optimized by controlling mole fractions typically of Mg and Si in Sr3-eMgbSi2cO8d:Eue or by further including an optimal amount of at least one additional component such as Ba or Ca. The resulting phosphor exhibits a higher brightness and a higher color purity upon excitation by ultraviolet light emitted as a result of discharge of xenon gas. The optimized phosphor is incorporated into light emitting devices such as lamps and PDPs, and further into display devices.
Owner:HITACHI LTD

Organic electroluminescent device

An organic electroluminescence device including opposite anode and cathode, and a hole-transporting region, an emitting layer and an electron-transporting region in sequential order from the anode between the anode and the cathode, wherein the emitting layer is formed of a red emitting layer, a green emitting layer, and blue emitting layer; the blue emitting layer contains a host BH and a fluorescent dopant FBD; the triplet energy ETfbd of the fluorescent dopant FBD is larger than the triplet energy ETbh of the host BH; the green emitting layer contains a host GH and a phosphorescent dopant PGD; a common electron-transporting layer is provided adjacent to the red emitting layer, the green emitting layer and the blue emitting layer within the electron-transporting region; the triplet energy ETel of a material constituting the electron-transporting layer is larger than ETbh; and the difference between the affinity of the host GH and the affinity of the material constituting the electron-transporting layer is 0.4 eV or less.
Owner:IDEMITSU KOSAN CO LTD

White organic light emitting device

Provided is a white organic light emitting device including an anode, a cathode and an organic layer disposed therebetween, the organic layer having a structure wherein an arrangement of a green emissive layer and a blue emissive layer is formed on both surfaces of a red emissive layer such that the resultant structure is symmetrical around the red emissive layer, and a spacer layer is disposed between opposing surfaces of the blue emissive layer and the green emissive layer, where the white organic light emitting device including this structure exhibits a constant luminescence spectra irrespective of any change in current density. A method of forming the white organic light emitting device is also disclosed.
Owner:SAMSUNG DISPLAY CO LTD

Organic light emitting diode display device

The OLED display device includes a first stack and a second stack that are separated from each other between an anode electrode and a cathode electrode, with a charge generation layer sandwiched between the first stack and the second stack, each of the first stack and the second stack having an emission layer. The first stack includes a blue emission layer formed between the anode electrode and the CGL. The second stack includes a fluorescent green emission layer and a phosphorescent red emission layer formed between the cathode electrode and the CGL. The blue emission layer includes one of a fluorescent blue emission layer and a phosphorescent blue emission layer.
Owner:LG DISPLAY CO LTD

Light-emitting device

An InGaN-based light-emitting diode that emits light in blue, for example, is mounted on a support substrate as a semiconductor light-emitting element, and a transparent film is fixed to the support substrate so as to cover the semiconductor light-emitting element. An electrode pattern is formed on an upper surface of the transparent film, and the electrode pattern is electrically connected to terminal electrodes of the semiconductor light-emitting element through, for example, through-holes. The transparent film can contain a phosphor excited by light emitted from the semiconductor light-emitting element. It is not necessary to perform wire bonding for connecting the semiconductor light-emitting element to the electrode pattern and sealing with a sealant.
Owner:PANASONIC CORP

Full color organic electroluminescent device and method for fabricating the same

The present invention relates to a full color organic electroluminescent device and a method for fabricating the same and provides a full color organic electroluminescent device. The invention reduces misalignment errors caused by fine patterning of the emitting layer by reducing the steps of the fine patterning process. In particular, the blue emitting layer functions as a hole inhibition layer which results in superior color purity and improved stability for the color organic electroluminescent device. The use of such a blue emitting layer also reduces the manufacturing steps. The device comprises a substrate; a first electrode pattern formed on the substrate; a red emitting layer formed by patterning a red emitting material on a red pixel region of the first electrode pattern and a green emitting layer formed by patterning a green emitting material on a green pixel region of the first electrode pattern. A blue emitting layer is applied over the entire substrate, over the upper parts of the red and green emitting layers and a second electrode is formed on an upper part of the blue emitting layer.
Owner:SAMSUNG DISPLAY CO LTD

Material for organic electroluminescent device

The present invention discloses a novel material is represented by the following formula (A), the organic EL device employing the material as blue emitting layer can lower driving voltage, prolong half-lifetime and increase the efficiency.Wherein m represent an integer of 0 to 4, R1 and R2 are identical or different. R1 and R2 are independently selected from the group consisting of a hydrogen atom, alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 carbon atoms. R3 and R4 are identical or different, R3 and R4 are independently selected from the group consisting of hydrogen atom, a halide, a substituted or unsubstituted arylamine, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
Owner:NINGBO LUMILAN NEW MATERIAL CO LTD

LED lamp

An LED lamp has a package and a plurality of light emitting elements that are electrically connected to a plurality of electrode plates provided in the package and that are sealed with transparent material. A red light emitting element of the plurality of light emitting elements is wire bonded along the longitudinal direction of the package, a green light emitting element and a blue light emitting element are flip-chip bonded with its electrode faced down, and the electrodes are extended to a surface opposite to the light emission surface of the LED lamp while being embedded in the package.
Owner:TOYODA GOSEI CO LTD +1

LED lamp with remote phosphor and diffuser configuration

ActiveUS20110267800A1Easy to replaceEfficient and reliable and cost-effectiveNon-electric lightingPoint-like light sourceOptical cavityLED lamp
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The diffuser dome can disperse the light passing through it into the desired emission pattern, such as omnidirection. In one embodiment, the light source can be blue emitting LED and the phosphor carrier can include a yellow phosphor, with the LED lamp or bulb emitting a white light combination of LED and phosphor light.
Owner:IDEAL IND LIGHTING LLC

Organic compound for organic electroluminescent device

The present invention discloses a novel organic compound is represented by the following formula(A), the organic EL device employing the compound as blue emitting layer can lower driving voltage, prolong half-lifetime and increase the efficiency.Wherein m represent an integer of 0 to 8, n represent an integer of 0 to 10, p represent an integer of 0 to 7, HAr represent a hydrogen, a halide, a cyanine group, a substituted or unsusbstituted heteroaryl group system having 5 to 6 aromatic ring atoms, R1 to R4 are identical or different. R1 to R4 are independently selected from the group consisting of a hydrogen atom, alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 carbon atoms.
Owner:NINGBO LUMILAN NEW MATERIAL CO LTD

Organic electroluminescent device, display and illuminating device

Disclosed is an organic electroluminescent (EL) device having high emission luminance and high emission efficiency. Particularly disclosed are a blue-light emitting organic EL device, which is high in emission luminance, color purity, emission efficiency and durability, a display and an illuminating device each employing the organic EL device. The organic El device is characterized in that it comprises a light emission layer containing two or more kinds of host compounds and at least one dopant, wherein at least one of the two or more kinds of host compounds has an excited triplet energy of not less than 2.7 eV, and the dopant is a phosphorescent compound.
Owner:MERCK PATENT GMBH

Full color organic electroluminescent device

The present invention is directed to a full color organic electroluminescent device which comprises a substrate; a first electrode formed on the substrate; an organic emitting layer formed on the first electrode, and having a red-emitting layer, a green-emitting layer and a blue-emitting layer, respectively patterned in a red pixel region, a green pixel region and a blue pixel region, and having the red and green-emitting layer consisting of a phosphorescent material and the blue-emitting layer consisting of a fluorescent material; a hole blocking layer formed on the organic emitting layer as a common layer; and a second electrode formed on the hole blocking layer, so that the full color organic electroluminescent device having enhanced lifetime and luminous efficiency characteristics can be provided.
Owner:SAMSUNG DISPLAY CO LTD

Pixel circuit of display device and method for driving the same

A pixel circuit of a display device for improving an opening ratio and a contrast ratio of emitting devices by sharing a driving circuit and sequentially emitting the emitting devices. A data charging period and an emitting period of the emitting devices are divided to prevent flow of wrong data current while data is being stored. The pixel circuit includes red, green, and blue emitting devices and a sequential controller sequentially controlling emission of the emitting devices for a certain sub-frame of a frame. A driving device is coupled to the emitting devices for transmitting driving signals to the emitting devices. A compensation circuit outputs voltage for compensating a threshold voltage of the driving device. The sequential controller controls the emitting devices so that the emitting devices are emitted only for a particular period of time of the subframe.
Owner:SAMSUNG MOBILE DISPLAY CO LTD

Display devices comprising green-emitting quantum dots and red KSF phosphor

LED devices emitting white light comprise a blue-emitting LED, green-emitting quantum dots (QDs) and red-emitting K2SiF6:Mn4+ (KSF) phosphor. A backlight unit (BLU) for a liquid crystal display (LCD) comprises one or more blue-emitting LEDs and a polymer film containing green-emitting QDs and KSF phosphor. The QDs and / or KSF phosphor may be encapsulated in beads that provide protection from oxygen and / or moisture.
Owner:SAMSUNG ELECTRONICS CO LTD

White electroluminescent device and method of producing the same

A white electroluminescent (EL) device and a method of preparing the same, includes a substrate, a first electrode, a hole transporting unit having a predetermined transporting unit thickness, a blue emitting layer having a predetermined blue layer thickness, a green emitting layer having a predetermined green layer thickness, a red emitting layer, and a second electrode, wherein the white EL device is capable of displaying white light having color coordinates of from about (0.27, 0.27) to about (0.39, 0.39).
Owner:SAMSUNG MOBILE DISPLAY CO LTD

Green phosphor for general illumination applications

A phosphor having the formula Na2(Ln1-y-zCeyTbz)2B2O7 wherein Ln is selected from the group consisting of La, Y, Gd, Lu, Sc and combinations thereof and wherein y=0.01-0.3 and z=0.0-0.3. The phosphor is suitable for use in a white-light emitting device including a UV / blue semiconductor light source having a peak emission from about 250 to about 550 nm and a phosphor blend including a blue emitting phosphor, a red emitting phosphor and a green emitting phosphor having the above described formula.
Owner:GELCORE LLC (US)

Organic el display panel, display device using same, and method for producing organic el display panel

An organic EL display panel includes: a first pixel electrode and a red organic light-emitting layer sequentially disposed in red subpixel region; a second pixel electrode and a green organic light-emitting layer sequentially disposed in green subpixel region; a third pixel electrode and a first blue organic light-emitting layer sequentially disposed in blue subpixel region; a charge generation layer disposed above the red, green, and first blue light-emitting layers; a second blue organic light-emitting layer disposed on the charge generation layer in the entire subpixel regions; a counter electrode disposed above the second blue light-emitting layer in the entire subpixels regions; a first light conversion layer disposed above the second blue light-emitting layer in the red subpixel region, and converts blue light to red light; and a second light conversion layer disposed above the second blue light-emitting layer in the green subpixel region, and converts blue light to green light.
Owner:JOLED INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products